
INFORMS Journal on Computing
Vol. 21, No. 2, Spring 2009, pp. 209–223
issn 1091-9856 �eissn 1526-5528 �09 �2102 �0209

informs ®

doi 10.1287/ijoc.1080.0286
©2009 INFORMS

Efficient Computation of Sparse Hessians Using
Coloring and Automatic Differentiation

Assefaw H. Gebremedhin, Arijit Tarafdar
Department of Computer Science and Center for Computational Sciences, Old Dominion University,

Norfolk, Virginia 23529 {agebreme@purdue.edu, tarafdar@cs.odu.edu}

Alex Pothen
Department of Computer Science and Computing Research Institute, Purdue University,

West Lafayette, Indiana 47907, apothen@purdue.edu

Andrea Walther
Institute of Scientific Computing, Technical University of Dresden, D-01062 Dresden, Germany,

andrea.walther@tu-dresden.de

The computation of a sparse Hessian matrix H using automatic differentiation (AD) can be made efficientusing the following four-step procedure: (1) Determine the sparsity structure of H , (2) obtain a seed matrix S
that defines a column partition of H using a specialized coloring on the adjacency graph of H , (3) compute the
compressed Hessian matrix B≡HS, and (4) recover the numerical values of the entries of H from B.
The coloring variant used in the second step depends on whether the recovery in the fourth step is direct or

indirect: a direct method uses star coloring and an indirect method uses acyclic coloring. In an earlier work, we had
designed and implemented effective heuristic algorithms for these two NP-hard coloring problems. Recently,
we integrated part of the developed software with the AD tool ADOL-C, which has recently acquired a sparsity
detection capability. In this paper, we provide a detailed description and analysis of the recovery algorithms
and experimentally demonstrate the efficacy of the coloring techniques in the overall process of computing the
Hessian of a given function using ADOL-C as an example of an AD tool. We also present new analytical results
on star and acyclic coloring of chordal graphs. The experimental results show that sparsity exploitation via
coloring yields enormous savings in runtime and makes the computation of Hessians of very large size feasible.
The results also show that evaluating a Hessian via an indirect method is often faster than a direct evaluation.
This speedup is achieved without compromising numerical accuracy.

Key words : sparse Hessian computation; acyclic coloring; star coloring; automatic differentiation; combinatorial
scientific computing

History : Accepted by Karen Aardal, Area Editor for Design and Analysis of Algorithms; received
October 2006; revised August 2007, April 2008; accepted April 2008. Published online in Articles in Advance
September 15, 2008.

1. Introduction
1.1. Background
Solvers for nonlinear optimization problems such
as IPOPT (Wächter and Biegler 2006) and LOQO
(Vanderbei and Shanno 1999) require second-order
derivatives of the Lagrangian function. Furthermore,
exact Hessians are needed in parametric sensitiv-
ity analysis, such as in the control of dynamical
systems in real time (Büskens and Maurer 2001).
A Hessian matrix or Hessian-vector products can
be computed accurately using automatic differentiation
(AD), a generic name for a set of chain–rule-based
techniques for evaluating derivatives of a function
given as a computer program (Griewank 2000).
A Hessian matrix that arises in a large-scale appli-

cation is typically sparse. Sparsity, along with symme-
try, can be exploited to reduce the runtime and the

storage required to compute the Hessian using AD (or
estimate it using finite differences). Matrix compression
has been found to be an effective technique in this
context: given an n×n Hessian matrix H of known
sparsity structure, an n × p seed matrix S, with p as
small as possible, is determined; then the numerical
values in the n× p compressed matrix B ≡ HS are
obtained using AD; and finally, the nonzero entries of
the original Hessian H are recovered from the com-
pressed representation B.
One way a matrix H is compressed to form a

matrix B is to partition the columns of H into p struc-
turally disjoint groups and let each column of B be the
sum of the columns of H that belong to the same
group. Mathematically, S is an n × p matrix whose
�j� k
 entry is one if column hj of the matrix H belongs
to group k, and zero otherwise. Because the matrix S
defines a partitioning of the columns of H , each of its

209

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
210 INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS

entries is either zero or one, and in every row r of S
there exists exactly one column c where the entry src
is equal to one.
The criteria used to find a suitable seed matrix S

where the parameter p is minimized—the specific
partitioning problem—depend on whether the nume-
rical values of the entries of the Hessian H are to be
recovered from the compressed matrix B directly or
indirectly (via substitution). In a direct recovery, no
further arithmetic is required, whereas in a recovery
via substitution, a set of simple triangular systems of
equations needs to be solved implicitly. The partition-
ing requirements for a seed matrix suitable for a sub-
stitution method are less strict than the requirements
for a seed matrix appropriate for a direct method.
Hence, the former usually results in a smaller p com-
pared with the latter.
The computation of a seed matrix requires only

structural information. Such matrix problems can be
formulated conveniently and solved as graph prob-
lems. Coleman and Moré (1984) showed that a star
coloring of the adjacency graph of a Hessian models
the partitioning problem that occurs in the compu-
tation of the Hessian via a direct method. Coleman
and Cai (1986) showed that the corresponding model
in a substitution-based computation is acyclic color-
ing. These specialized graph-coloring problems are
described in §2.
In a previous work, we had developed effective

heuristic algorithms for the NP-hard star- and acyclic-
coloring problems, and showed that the algorithms
are superior to previous approaches (Gebremedhin
et al. 2007). In an even earlier work (Gebremedhin
et al. 2005), we had provided a comprehensive review
of the role of graph coloring in the efficient com-
putation of Jacobians and Hessians. Recently, we
have developed efficient algorithms for recovering the
numerical values of a Hessian from a compressed
representation obtained using a star or an acyclic
coloring. These algorithms take advantage of two-
colored structures that the associated coloring algo-
rithms maintain. Our implementations of the coloring
as well as the recovery algorithms, which form
part of the software package ColPack (Gebremedhin
et al. 2009), have been integrated with ADOL-C, an
operator-overloading based AD tool for the differen-
tiation of functions specified in C/C++ (Griewank
et al. 1996). Walther (2008) recently developed a spar-
sity detection technique for Hessians and added the
functionality to ADOL-C.

1.2. Contributions
Our contributions in this paper are analytical as well
as experimental. In terms of theory, in §3 we provide
a detailed description and analysis of the Hessian
recovery algorithms mentioned earlier. Our analysis

includes time complexity as well as numerical stabil-
ity: we show that our recovery algorithms are linear
in the size of the problem and that indirect recovery
using two-colored trees is nearly as stable as direct
recovery. We also present, in §4, new results on star
and acyclic coloring of chordal graphs, a class to
which adjacency graphs of banded matrices belong.
Experimentally, we demonstrate in §5 the advan-

tage that coloring techniques offer in sparse Hessian
computation using AD. We use two test cases:
a real-world power transmission problem and a syn-
thetic unconstrained quadratic optimization prob-
lem. In both cases, we compute Hessians of various
dimensions and sparsity structures, including banded
and random structures, using ADOL-C. The results
obtained show that sparsity exploitation via star and
acyclic coloring enables one to affordably compute
Hessians of dimensions that could not have been
computed otherwise. For sizes where dense Hessian
computation is at least possible, the saving in run-
time obtained by exploiting sparsity via coloring is
dramatic. Furthermore, an indirect method that uses
acyclic coloring quite often is found to be faster than a
direct method that relies on star coloring, considering
the overall process. This speedup is achieved with-
out compromising numerical accuracy. The experi-
mental results also show that both the star- and the
acyclic-coloring heuristic algorithm we used find opti-
mal solutions for banded matrices.

1.3. Related Work
In sparse Hessian computation, an approach that can
be used either orthogonal to or in combination with
compression is the use of elimination techniques on the
computational graph of the Hessian. This approach
was first considered by Dixon (1991) and is the subject
of current research in the AD community. Partial sep-
arability is another related approach used in sparse
Hessian computation. Gay (1996) has considered such
an approach and its implementation using AMPL.

2. Graph Coloring
In the current work, we have used the star- and
acyclic-coloring algorithms we had developed earlier
(Gebremedhin et al. 2007). After reviewing a few pre-
liminary concepts, we briefly discuss these algorithms
in this section.

2.1. Preliminaries
Two distinct vertices in a graph are distance-k neigh-
bors if a shortest path connecting them consists of
at most k edges. The degree-k of a vertex v, denoted
by dk�v
, is the number of distinct paths of length
at most k edges that start at the vertex v; the average
degree-k is denoted by d̄k�v
. A distance-k coloring of
a graph G= �V �E
 is a mapping �� V → �1�2� � � � � p�

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS 211

such that whenever vertices v and w are distance-k
neighbors, ��v
 �=��w
. The kth power of a graph
G= �V �E
 is the graph Gk = �V � F
, where �v�w
 ∈ F
whenever vertices v and w are distance-k neighbors
in G. A mapping � is a distance-k coloring of a
graph G if and only if � is a distance-1 coloring of
the graph Gk.
A star coloring of a graph is a distance-1 coloring

where, in addition, every path in the graph on four
vertices (P4) is required to use at least three colors.
An acyclic coloring of a graph is a distance-1 color-
ing with the further restriction that every cycle in
the graph uses at least three colors. The names star
and acyclic coloring are due to the structure of two-
colored induced subgraphs. In a star-colored graph, a
subgraph induced by any two color classes—sets of
vertices having the same color—is a collection of stars.
A star is a complete bipartite graph in which one of
the vertex sets consists of a single vertex, called the
hub. The other vertices of the star are spokes. An edge
is a degenerate case of a star, in which one vertex is
the hub and the other, the spoke, assigned arbitrarily.
Similarly, in an acyclically colored graph, a subgraph
induced by any two color classes is a collection of
trees, and thus acyclic.
Each one of the distance-k, star-, and acyclic-

coloring problems, whose objective is to appropri-
ately color a graph using the fewest possible col-
ors, is known to be NP-hard (Coleman and Moré
1984, Coleman and Cai 1986, Lin and Skiena 1995).
The minimum number in each case is referred to
as a specialized chromatic number of the graph. The
distance-k chromatic number �k�G
, the star chro-
matic number �s�G
, and the acyclic chromatic num-
ber �a�G
 of a general graph G are all known to
be hard to approximate (Gebremedhin et al. 2007).
The following observation on the relationship among
these chromatic numbers follows directly from the
definitions of the various colorings and the fact that
a distance-1 coloring of a graph G is equivalent to a
distance-2 coloring of the square graph G2.

Observation 2.1. For every graph G, �1�G
 ≤
�a�G
≤ �s�G
≤ �2�G
= �1�G

2
.

2.2. Star- and Acyclic-Coloring Algorithms
The star- and acyclic-coloring heuristic algorithms we
developed in Gebremedhin et al. (2007) are founded
on one common key idea: maintain and efficiently use
the structure of two-colored induced subgraphs. As
stated earlier, the respective subgraphs here are a col-
lection of stars or trees. Both algorithms are greedy
in the sense that a partial coloring is progressively
extended by processing one vertex at a time. In each
step, a vertex v of an input graph G = �V �E
 is
assigned the smallest allowable color with respect to
the current partial coloring. This is achieved by first

determining the set of forbidden colors to the ver-
tex v. Here, identifying and forbidding colors used by
the vertices adjacent to the vertex v is straightforward.
Maintaining the collection of two-colored structures
turns out to be crucial for identifying and forbid-
ding colors that could lead to two-colored paths on
four vertices in the case of star coloring, and to two-
colored cycles in the case of acyclic coloring.
For star coloring, there are exactly two cases that

need to be considered to avoid a two-colored P4
involving the vertex v.
1. If the vertex v has two adjacent vertices w and x

of the same color, then the color of every vertex adja-
cent to w and the color of every vertex adjacent to x
should be marked as a forbidden color to the vertex v.
2. If the vertex v has exactly one adjacent vertex w

of color c, and w belongs to a star S consisting of
at least two edges but is not the hub of S, then the
color used by the hub of S should be marked as a
forbidden color to the vertex v.
Likewise, for acyclic coloring, there is one case that

needs to be addressed to avoid a two-colored cycle
involving the vertex v:
1. If the vertex v is adjacent to two vertices in a

two-colored tree T , and these vertices have the same
color, then the other color used in the tree T should
be marked as a forbidden color to the vertex v.
Once the color for the vertex v is determined, every

edge incident on v that leads to an already-colored
vertex is placed in the appropriate two-colored struc-
ture. Note that because a star (respectively, an acyclic)
coloring is also a distance-1 coloring, there is a unique
two-colored star (respectively, two-colored tree) to
which such an edge belongs. In other words, a star
(respectively, an acyclic) coloring partitions the edge
set of a graph into two-colored stars (respectively,
two-colored trees). In the acyclic-coloring algorithm
being described, the placement of an edge in a two-
colored tree may result in the merging of two previ-
ously disconnected trees in a two-colored forest. Such
a situation does not arise in the star-coloring case.
In Gebremedhin et al. (2007) it was shown that

the acyclic-coloring algorithm sketched above can be
implemented efficiently using the disjoint-set data
structure to maintain the collection of two-colored
trees. A simpler data structure was shown to be suf-
ficient for a similar purpose in the star-coloring
algorithm. The complexity of the star- and the
acyclic-coloring algorithm was shown to be O��V �d̄2

and O��V �d̄2 ·
, respectively, where is the inverse
of Ackermann’s function, a function that grows very
slowly with �V �.

3. Sparse Hessian Computation
We now relate the graph-coloring variants discussed
in the previous section with partitioning strategies for
Hessian compression for direct and indirect recovery.

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
212 INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS

X
X

X
X

X
X

X
X X X

XX
X
X

X
X

X

X
X

X
X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

X

2 3 4 5 6 7 8 91 10

h7 h8 h9

h6h5

h10

h1 h2 h3 h4

1 1

1

1

2

2

3

3 5

4

1 1 1 14 33 5 22

H

B1 =HS1 =

h11 h12 h17 0 0

h21+h23+h25 h22 0 0 0

h33 h32 h34 h36 0

h43 h4�10 h44 0 0

h55 h52 0 h56 h58

h63+h65+h69 0 0 h66 0

h71 0 h77 0 h78

h85+h89 0 h87 0 h88

h99 h9�10 0 h96 h98

h10�9 h10�10 h10�4 0 0

Figure 1 Top—A Symmetrically Orthogonal Partition of the Columns
of a Hessian and Its Representation as a Star Coloring of the
Adjacency Graph; Bottom—The Compressed Matrix Obtained
by Adding Together Columns that Belong to the Same Group
in the Partitioning

Note. The illustration uses five colors—red, blue, yellow, green, and navy
blue—that are also represented by the integers 1, 2, 3, 4, and 5, respectively,
as shown at the bottom edge of the matrix as well as adjacent to the vertices
of the graph.

3.1. Direct Method

3.1.1. Matrix Partitioning. For a direct recovery,
the columns of a Hessian matrix H need to be par-
titioned in such a way that for every nonzero entry
hij , either hij or its symmetric counterpart hji appears
as a sole entry in the compressed matrix. A symmet-
rically orthogonal partition of H precisely captures
this requirement. A partition of the columns of a Hes-
sian H is symmetrically orthogonal if for every nonzero
element, hij , either (1) the group containing column
hj has no other column with a nonzero in row i, or
(2) the group containing column hi has no other col-
umn with a nonzero in row j .
The left part of the upper row of Figure 1 illustrates

a symmetrically orthogonal partition of a Hessian
matrix H with a specific sparsity pattern. A nonzero
entry of H is denoted by the symbol “X” and a zero
entry is left blank. The 10 columns of H are par-
titioned into five groups, and columns that belong
to the same group are painted with the same color.
The five groups in the partition—represented by the
colors red, blue, yellow, green, and navy blue—are
also identified by the integers 1 through 5, respec-

tively, as shown at the bottom edge of the matrix.
(See the Online Supplement to this article, available
at http://joc.pubs.informs.org/ecompanion.html, for
a full-color version of this illustration, as well as the
one for Figure 4.) The partition in the illustration in
Figure 1 defines a 10×5 seed matrix, which we denote
by S1. For example, column 1 of S1 has 1s in rows 1,
3, 5, and 9, corresponding to the columns of H that
belong to group 1 (color red), and 0s in all other rows.
The lower row of Figure 1 shows the resultant com-
pressed matrix B1 =HS1. The reader can easily verify
that every nonzero entry of the matrix H (or its sym-
metric counterpart) can be read off directly from some
entry of the matrix B1.

3.1.2. Coloring Model. Let H be a Hessian, each
of whose diagonal elements is nonzero. The adjacency
graph G�H
 of the matrix H is an undirected graph
whose vertex set consists of the columns of H and
whose edge set consists of pairs �hi�hj
 whenever the
matrix entry hij , i �= j , is nonzero. In such a graph,
entries hij and hji are represented by the single edge
�hi�hj
, and there are no explicit edges representing
the diagonal entries of H . Coleman and Moré (1984)
established that the problem of finding a symmet-
rically orthogonal partition of a Hessian having the
fewest groups is equivalent to the star-coloring prob-
lem on its adjacency graph. The right part of the
upper row of Figure 1 illustrates this equivalence.

3.1.3. Recovery Routines. Figure 2 outlines a sim-
ple routine, called directRecover1, for recovering the
numerical values of the nonzero entries of a Hessian
H from its compressed representation B obtained via
a star coloring of G�H
. The routine achieves this by
considering the structure of H one row at a time.
The nonzero entries in a specific row are in turn
considered one element at a time. For each nonzero
entry hij in row i, the if-test in the inner for-loop
checks whether there exists a column index j ′ where
entries hij and hij ′ “collide”; i.e., columns hj and hj ′
belong to the same group. Depending on the out-
come of the test, either the entry hij or the entry hji

Input: The adjacency graph G�H
 of a Hessian H of order n; a
vertex-indexed integer array color specifying a star coloring of
G�H
; a compressed matrix B representing H .

Output: Numerical values in H .
for i← 1�2� � � � �n

for each j where hij �= 0
if ∃j ′ �= j where hij′ �= 0 and color"hj #= color"hj′ #
H"j� i#← B"j�color"hi##;

else
H"i� j#← B"i�color"hj ##;

end-if
end-for

end-for

Figure 2 directRecover1—A Routine for Recovering a Hessian from
a Star-Coloring-Based Compressed Representation

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS 213

Input: The adjacency graph G�H
 of a Hessian H of order n; a
vertex-indexed integer array color specifying a star coloring
of G�H
; a set � of two-colored stars; a compressed matrix B
representing H .

Output: Numerical values in H .
for i← 1�2� � � � �n
H"i� i#← B"i�color"hi##;

end-for
for each two-colored star S ∈�
Let hj be the hub vertex in S;
for each spoke vertex hi ∈ S
H"i� j#← B"i�color"hj ##;

end-for
end-for

Figure 3 directRecover2—A Routine Using Two-Colored Stars for
Recovering a Hessian from a Star-Coloring-Based
Compressed Representation

is read from an appropriate location in the matrix B.
Clearly, the if-test can be performed within O�d1�hi

time, where hi is the vertex being considered in the
current iteration of the outer for-loop, and d1�hi
 is
its degree-1 in the adjacency graph G�H
. Hence, the
complexity of directRecover1 is O��E� · d̄1
, where d̄1
is the average vertex degree in G�H
.
The recovery of Hessian entries in a direct method

theoretically could be done more efficiently by using
the set of two-colored stars defined by a star col-
oring of the adjacency graph. Specifically, directRe-
cover2, the routine specified in Figure 3, shows that
the recovery of the entries of the matrix H from
the matrix B can be done in O��E�
-time when the
two-colored structures are readily available. As can
be seen in the first for-loop, because adjacent ver-
tices in a star coloring receive different colors, each
diagonal element hii can be retrieved simply from
B"i�color�hi
#. The second (outer) for-loop shows that
each off-diagonal element hij can be obtained by con-
sulting the unique two-colored star to which the edge
�hi�hj
 belongs. The reader is encouraged to see the
routine in Figure 3 in conjunction with the illustra-
tion in Figure 1. For example, one can see that all of
the edges (off-diagonal nonzeros) that belong to the
red-blue (color 1-color 2) star induced by the vertices
�h1�h2�h3�h5� can be obtained from the group that
corresponds to the color of the hub vertex h2 (i.e., col-
umn 2 of B1). Note also that an edge such as �h1�h7

that belongs to a single-edge star can be obtained
from either one of its endpoints.

3.2. Substitution Method

3.2.1. Matrix Partitioning. If the requirement that
the entries of a Hessian be recovered directly from
a compressed representation is relaxed, then the
compression can be done much more compactly. One
possibility here is to use what is called a substitutable
partition. A partition of the columns of a symmetric

matrix H is substitutable if there exists an ordering on
the elements of H such that for every nonzero element
hij , either (1) column hj is in a group where all the
nonzeros in row i, from other columns in the same
group, are ordered before hij ; or (2) column hi is in a
group where all the nonzeros in row j , from other
columns in the same group, are ordered before hij .
In the definition just stated, a nonzero entry hij of a
symmetric matrix H is identified with the entry hji.
A nonzero entry hij is said to be ordered before a
nonzero entry hi′j ′ if hij is evaluated before hi′j ′ .

3.2.2. Coloring Model. Fortunately, the rather
clumsy notion of substitutable partition has a simple
graph-coloring formulation: Coleman and Cai (1986)
proved that an acyclic coloring of the adjacency graph
of a Hessian induces a substitutable partition of its
columns. Thus, the problem of finding a substitutable
partition with the fewest groups reduces to the prob-
lem of finding an acyclic coloring with the fewest
colors.
We use the illustration in Figure 4 to show how an

acyclic coloring can be used to obtain a substitutable
partition. The matrix H shown in Figure 4 has the
same sparsity structure as the matrix in Figure 1. The

X
X

X
X

X
X

X
XX X

XX X
X

X
X

X

X
X

X
X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

X

1 1

1

2 2

2 23

3

1

2 3 4 5 6 7 8 91 10

h6h5

h7 h8 h9 h10

h1 h2 h3 h4

1 1 1 23 22 3 12

H

B2 =HS2 =

h11 h12+h17 0

h21+h23+h25 h22 0

h33 h32+h34 h36

h43+h4�10 h44 0

h55 h52 h56+h58

h63+h65 h69 h66

h71 h77 h78

h85 h87 +h89 h88

h9�10 h99 h96+h98

h10�10 h10�4+h10�9 0

Figure 4 Top—A Substitutable Partition of the Columns of a Hessian
and Its Representation as an Acyclic Coloring of the
Adjacency Graph; Bottom—The Compressed Matrix Obtained
by Adding Together Columns that Belong to the Same Group
in the Partitioning

Note. The illustration uses three colors—red, blue, and yellow—that are also
represented by the integers 1, 2, and 3, respectively, as shown at the bottom
edge of the matrix as well as adjacent to the vertices of the graph.

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
214 INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS

coloring of the adjacency graph G�H
 depicted in Fig-
ure 4 is clearly acyclic. In the illustration, the columns
of the matrix H have been painted in accordance with
the shown acyclic coloring of G�H
. The lower row
shows the compressed matrix obtained using the seed
matrix S2 defined by the depicted acyclic coloring.

3.2.3. Recovery Routine. We proceed to show
how the acyclic coloring in Figure 4 will be used in
recovering the entries of the matrix H from the com-
pressed matrix B2 =HS2.
First, observe that every diagonal element hii is

directly recoverable from the compressed matrix B2,
because hii appears “alone” in row i and column k
of the matrix B2, where k corresponds to the group
to which column hi belongs. This is a direct conse-
quence of the fact that adjacent vertices in an acycli-
cally colored graph, as in a star-colored graph, receive
different colors.
Next, consider the task of determining the off-

diagonal nonzero entries hij , i �= j . Recall that each
such matrix entry and its symmetric counterpart cor-
respond to an edge in the adjacency graph, and an
acyclic coloring partitions the edges of the graph into
two-colored trees. We use each of these two-colored
trees, separately, to define an order in which edges can
be solved for.
In a two-colored tree, every edge incident on a leaf

vertex can be determined directly because it is the
only nonzero in a row of the group of columns to
which its parent vertex belongs. As an example, con-
sider the red-blue (color 1-color 2) tree in Figure 4
induced by the vertices �h1�h2�h3�h4�h5�h7�h9�h10�.
In this tree, the vertex h7 is a leaf, and the edge �h7�h1

can be immediately read from row 7 of the first col-
umn of B2, the group to which column h1 belongs.
Similarly, the vertex h9 is a leaf, and the edge �h9�h10

can be read from row 9 of the first column of B2, again
the group to which column h10 belongs. Likewise,
edge �h5�h2
 can be directly obtained from B2"5�2#.
Once the edges incident on leaf vertices have been

determined, they can be deleted from the tree to cre-
ate new leaves. The process can then be repeated to
solve for edges incident on the new leaf vertices by
using values computed for the leaf edges from earlier
steps. The process terminates when the tree becomes
empty, i.e., when all of the edges have been evalu-
ated. In general, there are alternative ways in which
an edge can be solved for, so the evaluation process
is not unique.
Returning to our illustration, in the red-blue tree,

once the edges �h7�h1
, �h9�h10
, and �h5�h2
 have
been evaluated and deleted, the path h1–h2–h3–h4–h10
remains. In this path, the edges �h1�h2
 and �h10�h4

are incident on leaf vertices; the edge �h1�h2
 can be
evaluated using B2"1�2# and the previously computed
value for the edge �h7�h1
, and the edge �h10�h4
 can

Input: The adjacency graph G�H
 of a Hessian H of order n; a
vertex-indexed integer array color specifying an acyclic coloring
of G�H
; a set � of two-colored trees; a compressed matrix B
representing H .

Output: Numerical values in H .
for i← 1�2� � � � �n
H"i� i#← B"i�color"hi##;

end-for
for each two-colored tree T ∈�

for each vertex hj ∈ T
storedValues"hj #← 0;

end-for
while the tree T is not empty
Pick a leaf vertex hi ∈ T ;
Let hj be the parent of hi in T ;
H"i� j#← B"i�color"hj ##− storedValues"hi#;
storedValues"hj #← storedValues"hj #+H"i� j#;
Delete vertex hi (along with edge �hi�hj
) from T ;

end-while
end-for

Figure 5 indirectRecover—A Routine Using Two-Colored Trees for
Recovering a Hessian from an Acyclic-Coloring-Based
Compressed Representation

be evaluated using B2"10�2# and the previously com-
puted value for the edge �h9�h10
. After this, the edges
�h1�h2
 and �h4�h10
 can be deleted, leaving the path
h2–h3–h4 from which the edges �h2�h3
 and �h3�h4

can be evaluated.
The red-blue tree in Figure 4 enabled the determina-

tion of 7 of the 13 distinct off-diagonal nonzero entries.
The remaining six nonzeros are determined using the
other two trees, the red-yellow (color 1-color 3) tree
and the blue-yellow (color 2-color 3) tree.
We summarize the process we have been describ-

ing thus far in Figure 5, where we outline the routine
indirectRecover for evaluating the nonzeros of a
Hessian from a compressed representation induced by
an acyclic coloring. Note the resemblance between the
routines directRecover2 and indirectRecover. The
first for-loops in each case correspond to the deter-
mination of diagonal nonzeros, and the second for-
loops to the recovery of off-diagonal nonzeros from
two-colored stars (respectively, trees). In indirectRe-
cover, the variable storedValues is used to store edge
values that will be “substituted” in the determination
of edges in later steps. Specifically, let �hi�hj
 be a pair
of child and parent vertices, respectively, in a two-
colored tree T , and let T �hi
 denote the subtree of T
rooted at the vertex hi that would remain if the edge
�hi�hj
 were to be removed from T . Then it is easy to
see that the quantity stored in the variable storedVal-
ues at the index hi is

storedValues"hi#=
∑

�hr �hs
∈ET �hi

H"r� s#� (1)

where ET �hi
 denotes the set of edges in the tree T �hi
,
and the entry H"i� j# of the Hessian is computed using

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS 215

the equation

H"i� j#= B"i�color"hj ##− storedValues"hi#� (2)

Using appropriate data structures, the computational
work associated with each two-colored tree in indi-
rectRecover can be performed in time proportional
to the number of edges in the tree. Thus, the over-
all complexity of indirectRecover on an adjacency
graph G�H
= �V �E
 is O��E�
.
3.3. Numerical Stability
How does the routine indirectRecover com-
pare with the routines directRecover1 or direct-
Recover2 in terms of numerical stability? The answer
to this question turns out to be quite positive:
indirectRecover for practical purposes is nearly as
stable as directRecover. Our analytical justification
for this claim is a natural extension of the works
of Powell and Toint (1979) and Coleman and Cai
(1986), who analyzed the error bounds associated
with (specialized) substitution methods in the context
of Hessian estimation using finite differences. In our
context, because the compressed Hessian B is com-
puted analytically using automatic differentiation (and
thus exactly within machine precision), the associated
numerical stability analysis is fundamentally differ-
ent. Issues such as truncation error and choice of step
length do not arise in our context.
The only arithmetic operations involved in indi-

rectRecover are subtraction and addition; the
absence of division is highly favorable for numerical
stability. Furthermore, the determination of nonzeros
(edges) in one two-colored tree is entirely indepen-
dent of the determination of edges in another two-
colored tree, and therefore there is less opportunity
for error magnification. As we shall show shortly, the
error accumulation within a two-colored tree is in
turn very limited.
Let �hi�hj
 be an edge in the input graph G�H
 =

�V �E
 to indirectRecover, and let T = �VT �ET

be the two-colored tree to which the edge �hi�hj

belongs. Furthermore, as done earlier, let T �hi
 =
�VT �hi
� ET �hi

 denote the subtree of T rooted at the ver-
tex hi that is obtained by removing the edge �hi�hj

from T . Let n, nT , and nT �hi
 denote the number of
vertices in G�H
, T , and T �hi
, respectively. Our goal
is to prove a bound on the accuracy of the Hessian
entry H"i� j# computed using Equation (2). First, fol-
lowing Powell and Toint (1979), we define the error
matrix �, the pointwise difference between the com-
puted Hessian H and the analytic Hessian $ 2f , as

�"i� j#=H"i� j#− �$ 2 f �x

ij (3)

for all pairs i and j such that �hi�hj
 is an edge in
G�H
. In Theorem 3.1 we will show that ��"i� j#�, the

magnitude of the error associated with the computa-
tion of H"i� j# by indirectRecover, is bounded by the
product of nT �hi
, the number of vertices in the subtree
T �hi
 of T , and a constant independent of T .

Theorem 3.1. The numerical value computed by indi-
rectRecover for each edge �hi�hj
 in the input graph
G�H
 is such that ��"i� j#� ≤ nT �hi
 ·&, where & is a positive
constant.

Proof. Because the compressed Hessian B is com-
puted in floating point arithmetic, it inevitably con-
tains rounding errors. Let

�B"i�color"hj ##=B"i�color"hj ##+'"i�color"hj ## (4)

denote the computed matrix taking such errors into
account. Thus, the actual value H"i� j# evaluated using
indirectRecover is

H"i� j#= �B"i�color"hj ##− storedValues"hi#� (5)

Analogous to the error matrix � associated with H , let
the error matrix (be the pointwise difference between
the computed values contained in �B and the corre-
sponding values in the analytic Hessian $ 2f ; i.e., let

("i�color"hj ##

�= �B"i�color"hj ##−
∑

�hr �hs
∈ET �hi

�$ 2f �x

rs−�$ 2f �x

ij � (6)

Using Equations (1) and (5), Equation (6) can be writ-
ten as

("i�color"hj ## = H"i� j#− �$ 2 f �x

ij

+ ∑
�hr �hs
∈ET �hi

�H"r� s#− � $ 2 f �x

rs

= �"i� j#+ ∑
�hr �hs
∈ET �hi

�"r� s#�

It then follows that

�"i� j#= ("i�color"hj ##−
∑

�hr �hs
∈ET �hi

�"r� s#�

Applying the same decomposition to each �"r� s# for
�hr�hs
 ∈ ET �hi
, one obtains

�"i� j#= ("i�color"hj ##−
∑

�hr �hs
∈ET �hi

("r�color"hs##�

Taking the absolute values of scalar quantities and
noting that the tree T �hi
 has nT �hi
− 1 edges,

��"i� j#� ≤ �("i�color"hj ##�
+ ∑

�hr �hs
∈ET �hi

�("r�color"hs##� (7)

≤ �("i�color"hj ##� + �nT �hi
− 1

· max
�hr �hs
∈ET �hi

�("r�color"hs##�� (8)

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
216 INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS

If we assume that the second derivatives of f are
bounded, then there exists a positive constant M such
that the maximum of the two terms in Equation (8),
and indeed of similar terms in the entire graph G�H
,
can be bounded as follows:

& �= max
1≤r ′� s′≤n

��("r ′�color"hs′ ##��
≤ M + max

1≤r ′� s′≤n
��'"r ′�color"hs′ ##���

Thus, Equation (8) reduces to ��"i� j#� ≤ nT �hi
 · &,
which is what we wanted to show. �

Suppose the acyclic coloring used in the context
of indirectRecover is actually a star coloring. Then,
clearly, for each edge �hi�hj
, the two-colored tree to
which the edge �hi�hj
 belongs is a star; i.e., T �hi
 is
simply the vertex hi. In such a case, in agreement with
our expectations, Theorem 3.1 suggests that the error
associated with the evaluation of �hi�hj
 is bounded
simply by &.

4. Coloring Chordal Graphs
The test suite in our experiments includes Hessian
matrices with banded nonzero structures, whose adja-
cency graphs are band graphs (defined later in this
section). Here, we present analytical results on the
distance-k, star, and acyclic chromatic numbers of the
larger class of chordal graphs, an important class of
graphs with a wide range of applications (Brandstädt
et al. 1999).
Let A be a symmetric matrix of order n with

nonzero diagonal elements. The lower bandwidth of A
is defined as +l�A
=max��i− j�� i > j� aij �= 0�, and the
bandwidth of A is the quantity +�A
= 2+l�A
+ 1. The
matrix A is banded if it is completely dense within
the band; i.e., if for any pair of indices 1 ≤ i, j ≤ n,
�i− j� ≤ +�A
⇔ aij �= 0.
The bandwidth of a matrix has a twin concept in

the adjacency graph.
Let G = �V �E
 be a graph on n vertices and let .

be an ordering v1�v2� � � � � vn of the vertices. The band-
width of the ordering . in G is +.�G
 = max��i − j� �
�vi� vj
 ∈ E�, and the bandwidth of the graph G is +�G
=
min�+.�G
� . is an ordering of V �. A graph G is a
band graph if there exists an ordering v1�v2� � � � � vn of
its vertices such that for any pair of indices i� j drawn
from the set �1�2� � � � �n�, �i− j� ≤ +�G
⇔ �vi� vj
 ∈ E;
the order v1�v2� � � � � vn is referred to as the natu-
ral ordering of the band graph G. For a general
graph, finding a vertex ordering with the minimum
bandwidth—computing the quantity +�G
—is an NP-
complete problem (Papadimitriou 1976).
The bandwidth of a symmetric matrix A and that of

the adjacency graph G�A
 are related in the following
way: +�G�A

≤ +l�A
≡ �+�A
− 1
/2. In this relation-
ship, equality holds when A is banded, in which case

G�A
 is a band graph, and the natural ordering of
the vertices of G�A
 corresponds to the given order-
ing of the columns of A. When A is not banded, there
exists a permutation matrix P such that +�G�A

 =
+l�PAP

T
.
A graph G is chordal if every cycle in G of length

at least four has a chord—an edge that connects two
nonconsecutive vertices in the cycle. Clearly, a band
graph is chordal. In fact, it is a highly structured,
almost regular, chordal graph: the degree d�vi
 of the
ith vertex in the natural ordering of the vertices can be
expressed as d�vi
= d�vn−i+1
= +�G
+ i−1 for 1≤ i≤
+�G
, and d�vi
 = 2+�G
 for +�G
+ 1≤ i≤ n−+�G
.
A graph does not need to be this regular to be chordal.
For example, the adjacency graph of a symmetric
matrix in which rows are allowed to have variable
number of nonzeros, but the nonzeros in every row
are required to be consecutive, is chordal but not
band.
In what follows we present results, which we

believe to be new, concerning the relationships among
the distance-k chromatic number �k�G
, the star chro-
matic number �s�G
, the acyclic chromatic num-
ber �a�G
, the clique number 1�G
—the size of the
largest clique in G—and the bandwidth +�G
 of a
chordal (not necessarily band) graph G. We begin
with a simple observation that is true of any (not nec-
essarily chordal) graph.

Lemma 4.1. For every graph G = �V �E
, 1�G
 ≤
+�G
+ 1, and 1�G2
≤min�2+�G
+ 1� �V ��.
Proof. Let . be an ordering of the vertices of G

such that +.�G
= +�G
. Suppose there exists a clique
Q in G of size greater than +�G
+ 1. Then it means
that there exists some pair of vertices v and w in
the clique Q such that �.�v
 − .�w
� > +�G
, a con-
tradiction. Hence, the clique number of G cannot
exceed +�G
+ 1. The result for the square graph can
be shown in an analogous fashion. �

Lemma 4.2. If a mapping � is a distance-1 coloring for
a chordal graph G, then � is also an acyclic coloring for G.

Proof. Let � be a distance-1 coloring for a chordal
graph G. Consider any cycle C in G, and let l be its
length. If l = 3, then � clearly uses three colors. If
l ≥ 4, then C contains a chord, and therefore � uses
at least three colors. Hence, � is an acyclic coloring
for G. �

Theorem 4.3. For every chordal graph G, �a�G
 =
�1�G
=1�G
≤ +�G
+1. In the last relationship, equality
holds when G is a band graph.

Proof. The equality �a�G
 = �1�G
 follows from
Lemma 4.2. Because a chordal graph is perfect, �1�G
=
1�G
 by the perfect graph theorem (Lovász 1972). The
last inequality was proven in Lemma 4.1 for any

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS 217

(including chordal) graph. When G is a band graph,
clearly, 1�G
= +�G
+ 1. �

There exist chordal graphs where the last inequality
in Theorem 4.3 is strict. For example, a star graph G
on n vertices has 1�G
= 2, but +�G
= �n/2�.
Theorem 4.4. For every chordal graph G= �V �E
,

�s�G
≤ �2�G
=1�G2
≤min�2+�G
+ 1� �V ���
In both the first and the third relationship, equality holds
when G is a band graph.

Proof. The first inequality follows from Observa-
tion 2.1, and the third from Lemma 4.1. The square
graph of a chordal graph is chordal and hence perfect.
Therefore, �2�G
= �1�G

2
=1�G2
. Turning to the spe-
cial case of band graphs, Coleman and Moré (1984)
have shown that for a band graph G with at least
3+�G
+1 vertices, �s�G
= �2�G
. For a band graph G,
1�G2
=min�2+�G
+ 1� �V ��. �

There exist chordal graphs where the first inequal-
ity in Theorem 4.4 is strict. An example, once again,
is a star graph G on n vertices, which has �s�G
 = 2
but �2�G
= n.
If symmetry were to be ignored, a structurally orthog-

onal partition of the columns of a Hessian—a partition
in which no two columns in a group have nonzeros
at a common row index—could be used to compress
a Hessian in a direct method. As McCormick (1983)
first showed, a structurally orthogonal partition of a
Hessian can be modeled by a distance-2 coloring of
its adjacency graph. In light of these facts, the result
�s�G
= �2�G
= 2+�G
+1 for a band graph G given in
Theorem 4.4 is negative: it shows that exploiting sym-
metry in a direct computation of a banded Hessian
matrix (star coloring) does not lead to fewer colors
in comparison with a direct computation that ignores
symmetry (distance-2 coloring). The result �1�G
 =
�a�G
 = +�G
 + 1 in Theorem 4.3, on the contrary,
shows that symmetry exploitation in a banded matrix
is worthwhile in a substitution method.
We conclude this section with some remarks on the

performance of greedy coloring algorithms on chordal
graphs. Recall that a greedy coloring algorithm pro-
cesses vertices in some order, each time assigning
a vertex the smallest allowable color subject to the
conditions of the specific coloring problem. There
exist several “degree”-based ordering techniques—
including largest-degree-first, smallest-degree-last and
incidence-degree—that have proven to be quite effec-
tive (but still suboptimal) for distance-k coloring of
general graphs (Gebremedhin et al. 2005).
For chordal graphs, better ordering techniques

exist. Given a graph G = �V �E
, an ordering
v1�v2� � � � � vn of the vertices in V is a perfect elimina-
tion ordering (peo) of G if for all i ∈ �1�2� � � � �n�, the

vertex vi is such that its neighbors in the subgraph
induced by the set �vi� � � � � vn� form a clique. It is well
known that a graph G is chordal if and only if it has a
peo. It is also known that a greedy distance-1 coloring
algorithm that uses the reverse of a peo of G gives an
optimal solution, i.e., computes a coloring with �1�G

colors (Brandstädt et al. 1999). For the special case of
a band graph, the natural ordering of the vertices, as
well as its reverse, is a peo. Thus, a greedy distance-1
coloring algorithm that uses the natural ordering of
the vertices would give an optimal solution. However,
as Lemma 4.5 and its corollary will imply, an optimal
coloring for a band graph can be obtained without
actually executing the greedy algorithm.

Lemma 4.5. Let G = �V �E
 be any graph and let
v1�v2� � � � � vn be an ordering in which the bandwidth of G
is attained. Then the mappings �1�vi
= i mod �+�G
+1

and �2�vi
= i mod �2+�G
+ 1
 define a distance-1 color-
ing and a distance-2 coloring of G, respectively. If G is a
band graph, then both of these colorings are optimal.

Corollary 4.6. For every graph G= �V �E
, �1�G
≤
+�G
+1, and �2�G
≤min�2+�G
+1� �V ��. In both rela-
tionships, equality holds when G is a band graph.

The optimality of �1 and �2 in Lemma 4.5 in the
case of band graphs, and the implied equalities in
Corollary 4.6, follow from Theorems 4.3 and 4.4.

5. Numerical Experiments
In this section, we present experimental results con-
cerning the following four steps involved in the
efficient computation of the Hessian of a given
function f .

Step S0: Detect the sparsity pattern of the Hessian
Step S1: Obtain a seed matrix S using an appropri-

ate graph coloring
Step S2: Compute the Hessian-seed matrix product

B≡HS
Step S3: Recover the nonzero entries of H from B

We use two different optimization problems as test
cases: an electric power flow problem, represent-
ing a real-world application; and an unconstrained
quadratic optimization problem, a synthetic case cho-
sen for a detailed performance analysis. The underly-
ing test function f in both test cases is specified in the
programming language C. The coloring and recovery
codes (steps S1 and S3) are written in C++ as part
of the software package ColPack (Gebremedhin et al.
2009) and are incorporated into ADOL-C. For step S3,
in the direct case, the routine directRecover1 is
used. For the step S2, the second-order adjoint mode
in the latest version of ADOL-C, which is signifi-
cantly faster than previous versions, is used. When
needed, the sparsity structure of the Hessian (step S0)

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
218 INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS

Table 1 Absolute Runtimes in Seconds for the Evaluation of the Function f and the Steps S0, S1, S2, and S3 for Test Hessians
in the Optimal Power Flow Problem

Direct Indirect

n Eval�f � S0 S1 S2 S3 Tot S1 S2 S3 Tot Dense

72 0.000008 0�001 0.0006 0�007 0.00003 0�008 0.0004 0�005 0.0004 0�005 0�08
3,760 0.000587 0�247 0.0252 0�805 0.00248 0�833 0.0464 0�646 0.0617 0�755 201�32
4,472 0.000717 0�372 0.0329 0�899 0.00307 0�935 0.0601 0�561 0.0791 0�700 257�99
9,932 0.001933 6�212 0.0929 2�839 0.00719 2�939 0.2220 1�159 0.3049 1�686 1315�43
22,540 0.002118 22�662 0.2170 20�162 0.01741 20�396 1.0402 12�531 1.2981 14�869 ∗∗∗

Notes. The last column shows runtime for the computation of a Hessian without exploiting sparsity. The asterisks indicate that space
could not be allocated for the full Hessian.

is determined using the recently added functional-
ity in ADOL-C (Walther 2008). The experiments on
the power flow problem are performed on a Linux
system with an Intel Xenon 1.5 GHz processor and
1 GB RAM, and those on the synthetic problem are
performed on a Fedora Linux system with an AMD
Athlon XP 1.666 GHz processor and 512 MB RAM. In
both cases, the gcc 4.1.1 compiler with -02 optimiza-
tion is used.

5.1. Optimal Power Flow Problem

5.1.1. Description. This problem is concerned
with the management of power transmission over a
network that has observable parts, where measured
data are available, and unobservable parts (Dancre
et al. 2002). For an unobservable part, one usually has
estimations of the data, for example, from the past.
For a proper management of the network, however, a
complete and actual database for the entire network
is needed. Therefore, one relies on computed data in all
parts of the network. In the observable areas, the com-
puted data should be as close to the measured data
as possible. In addition, one needs to minimize the
weighted least-squares distance between the computed
data and the estimated data in unobservable parts and
boundary areas. This gives a nonlinear optimization
problem of the form

min
x∈�n

f �x
 s.t. g�x
= 0� l≤ h�x
≤ u� (9)

with the objective function f � �n → �, the equality
constraints g� �n →�m, and the inequality constraints
h� �n → �p being twice continuously differentiable.
The optimization problem (9) can be solved using
an interior-point based tool such as LOQO or IPOPT
(Vanderbei and Shanno 1999, Wächter and Biegler
2006). These solvers require the provision of the
Jacobian matrices $g�x
 and $h�x
 as well as the
Hessian of the Lagrange function L�x�8�9
= f �x
+
8T g�x
 + 9T h�x
 with respect to x in sparse format.
We report on runtimes for this Hessian computation
using actual problem instances.

5.1.2. Results and Discussion. Table 1 lists the
absolute runtimes in seconds spent in the various
steps for the five Hessians considered in our exper-
iments. The first two columns of Table 2 show the
number of rows and the average number of nonzeros
per row in the Hessians used in the experiments; the
next two columns show the number of colors used in
the direct and indirect cases; and the last four columns
show timing results for various steps, each normal-
ized relative to the time needed to evaluate the under-
lying function f .
The results in Tables 1 and 2 clearly show that

employing coloring in Hessian computation enables
one to solve large-size problems that could not oth-
erwise have been solved. For problem sizes where
dense computation is possible, the results show that
sparsity exploitation via coloring yields huge savings
in runtime. Furthermore, it can be seen that indi-
rect computation using acyclic coloring is faster than
direct computation using star coloring, considering
overall runtime. Comparing the steps S1, S2, and S3
against each other, as can be seen from Figure 6, the
coloring (S1) and recovery (S3) steps are almost neg-
ligible compared with the step in which the Hessian-
seed matrix product is computed (S2), both in the
direct and indirect methods.
Numerically, we observed that indirect recovery

gave Hessian entries of the same accuracy as direct
recovery. This experimental observation agrees well
with the analysis in §3.3.

Table 2 Matrix Structural Data, Number of Colors, and Normalized
Runtime Relative to Function Evaluation for Test Hessians in
the Optimal Power Flow Problem

Colors Total (S1–S3)

n �� Direct Indirect S0 Direct Indirect Dense

72 3.72 9 6 125 954 725 10�000
3,760 4.11 15 12 421 1�419 1�285 342�964
4,472 3.99 16 10 519 1�304 976 359�819
9,932 3.91 22 9 3�213 1�520 872 680�512
22,540 3.94 16 10 10�700 9�630 7�020 ∗∗∗

Note. The asteriks indicate that space could not be allocated.

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS 219

0 5 10 20
0

2,000

4,000

6,000

8,000

10,000

n/1,000 n/1,000

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

0

2,000

4,000

6,000

8,000

10,000

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

Direct method

Total
S2
S3
S1

0 5 10 20

Indirect method

Figure 6 Runtimes of the Various Steps Normalized by the Runtime of Function Evaluation for the Power Flow Problem

A final point to be noted from Table 2 is that the
runtime of the sparsity detection routine is relatively
large in comparison with the routines in the other
steps. In future work, we plan to explore ways in
which this can be reduced.

5.2. Unconstrained Quadratic Optimization
Problem

5.2.1. Description. The sizes and structures of the
Hessians from the optimal power flow problem that
we could include in our experiments were quite lim-
ited. To be able to study the performance of the
various steps in a systematic fashion, we considered
a synthetic problem in which we have a direct control
over the size and structure of the Hessians. In particu-
lar, we used the unconstrained quadratic optimization
problem minx∈�n f �x
with f �x
= xT Cx+aT x, C ∈�n×n

and aT = �10� � � � �10
 ∈�n, where the Hessian is sim-
ply the matrix C. We considered two kinds of sparsity
structures for the matrix C: banded (bd) and random
(rd). Furthermore, the test matrices were designed in
such a way that:
(i) the number of nonzeros per row in a banded

matrix (denoted by :) is nearly the same as the num-
ber of nonzeros per row in a random matrix (denoted
by �:), and
(ii) the value for :, or �:, remains constant as the

problem dimension n is varied.
In our experiments, we used the values : ∈

�10�20�, �: ∈ �10�98�20�99�, and n/1�000 ∈ � ≡
�5�10�20�40�60�80�100�.

5.2.2. Results and Discussion.
Number of Colors. Table 3 provides a summary of

the numbers of colors used by the star-coloring algo-
rithm (direct method) and the acyclic-coloring algo-
rithm (indirect method) for all the sparsity structures
and input sizes considered in the experiments. Two
observations can be made from this table.
First, for the banded structure, the acyclic- and

star-coloring algorithms invariably used �:/2�+ 1 and

2�:/2�+ 1 colors, respectively, regardless of the value
of n. In view of Theorems 4.3 and 4.4, and noting that
�:/2� is the bandwidth of the corresponding graphs,
we see that both algorithms find optimal solutions for
band graphs. Both algorithms are greedy, and vertices
were colored in the natural ordering of the graphs.
Hence, the observed phenomenon agrees with the
theory of distance-1 coloring discussed in the last
paragraph of §4.
Second, in both the star- and the acyclic-coloring

cases, the numbers of colors required by the random
structures were observed to be nearly twice the cor-
responding numbers in the banded structures. More-
over, the numbers of colors varied only slightly as the
problem dimension n was varied.

Runtime. Table 4 lists the absolute runtime in sec-
onds spent in the various steps while using a direct
and an indirect method. The information in Table 4
is analogous to that presented in Table 1 for the opti-
mal power flow problem. The general conclusion to
be drawn from Table 4 in terms of the enabling power
of the coloring techniques in the overall computation
is similar to that drawn from the optimal power flow
problem. Our objective here is to show how the exe-
cution time for each step grows as a function of the
input size.
Figure 7 shows a collection of normalized runtime

versus problem dimension (n) plots. In particular, the

Table 3 Number of Colors Used by the Star- and
Acyclic-Coloring Algorithms for All
Problem Dimensions n in the Set n/1�000 ∈
� ≡ 	5�10�20�40�60�80�100

�, ��
10, 10.98 20, 20.99

Star Acyclic Star Acyclic

bd 11 6 21 11
rd 21–24 9–11 50–56 18–19

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
220 INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS

Table 4 Absolute Runtimes in Seconds for the Evaluation of the Function f and the Steps S1, S2, and S3
in the Quadratic Optimization Problem

Direct Indirect

n/1�000 Eval�f � S1 S2 S3 Tot S1 S2 S3 Tot Dense

bd:
5 0.0006 0�05 0�20 0.006 0�25 0�08 0�11 0�05 0�24 86�1

10 0.0010 0�11 0�40 0.012 0�52 0�25 0�22 0�10 0�57 342�0
20 0.0019 0�23 0�79 0.023 1�05 0�81 0�43 0�21 1�45 ∗∗∗

40 0.0035 0�55 1�61 0.046 2�21 2�86 0�86 0�46 4�18 ∗∗∗

60 0.0049 0�81 2�31 0.066 3�19 6�12 1�25 0�73 8�10 ∗∗∗

80 0.0062 1�03 3�06 0.088 4�18 11�03 1�65 0�99 13�67 ∗∗∗

100 0.0077 1�31 3�83 0.110 5�25 16�33 2�08 1�23 19�64 ∗∗∗

rd:
5 0.0005 0�07 0�41 0.007 0�49 0�10 0�17 0�11 0�38 147�9

10 0.0009 0�19 0�90 0.014 1�10 0�30 0�38 0�30 0�98 589�4
20 0.0020 0�46 2�01 0.029 2�50 0�95 0�83 0�87 2�65 ∗∗∗

40 0.0043 1�08 4�51 0.064 5�66 3�21 1�84 2�67 7�73 ∗∗∗

60 0.0082 1�77 7�54 0.103 9�41 6�75 3�13 5�25 15�13 ∗∗∗

80 0.0125 2�50 10�78 0.140 13�41 11�52 4�54 8�66 24�71 ∗∗∗

100 0.0170 3�26 13�16 0.174 16�60 17�52 5�55 13�01 36�07 ∗∗∗

bd:
5 0.0008 0�16 0�63 0.015 0�81 0�14 0�33 0�12 0�59 84�0

10 0.0015 0�36 1�27 0.030 1�66 0�37 0�67 0�23 1�28 362�8
20 0.0029 0�84 2�57 0.061 3�47 1�07 1�34 0�51 2�91 ∗∗∗

40 0.0056 1�68 5�14 0.118 6�93 3�40 2�61 1�10 7�12 ∗∗∗

60 0.0084 2�56 7�46 0.176 10�19 6�93 3�91 1�66 12�51 ∗∗∗

80 0.0109 3�54 10�47 0.234 14�24 11�85 5�47 2�31 19�63 ∗∗∗

100 0.0135 4�44 12�95 0.300 17�70 17�74 6�81 3�07 27�61 ∗∗∗

rd:
5 0.0008 0�29 1�66 0.017 1�97 0�20 0�55 0�24 0�99 151�0

10 0.0015 0�70 3�49 0.035 4�23 0�52 1�15 0�65 2�31 594�9
20 0.0033 1�65 8�14 0.071 9�86 1�44 2�67 1�87 5�98 ∗∗∗

40 0.0087 3�91 19�99 0.156 24�06 4�35 6�43 5�59 16�36 ∗∗∗

60 0.0150 6�04 29�91 0.234 36�19 8�56 9�89 10�81 29�26 ∗∗∗

80 0.0246 8�91 45�12 0.338 54�36 14�37 15�00 18�03 47�40 ∗∗∗

100 0.0317 11�93 54�71 0.413 67�07 21�34 19�00 26�91 67�25 ∗∗∗

Notes. The upper half of the table shows results for �= 10 (banded) and ��= 10�98 (random) and the lower half
for �= 20, and ��= 20�99. All runtimes are averages of five runs. For the random structures, the runtimes are in
addition averaged over five randomly generated matrices.

vertical axis in each subfigure shows the execution
time of a specific step divided by the time needed to
evaluate the function f being differentiated; note that
the scales on the axes differ from subfigure to subfig-
ure. Below, we discuss the runtime behavior of the
various steps turn by turn; but first, we look at how
the normalizing quantity, the time needed for evalu-
ating f , itself grows as a function of n.

Time for Evaluating f . Because the number of
nonzeros per row (column) in the structures we con-
sidered is constant, the time needed to evaluate the
function f theoretically is expected to be linear in
the number of rows (columns) n. Figure 8 shows that
the practically observed execution times are roughly
linear in n across the structures we considered. For
the banded structures, the growth is actually slightly
sublinear. The growth is somewhat superlinear for
the random structures, especially for the cases where
�:= 20�99. This is due mainly to the irregular memory

accesses involved and the associated nonuniform
costs in hierarchical memory.

Step S1: Coloring and Generation of Seed Matrix.
Recall from §2 that the complexity of the star-coloring
algorithm for a graph on n vertices is O�nd̄2
 and
that of the acyclic-coloring algorithm is O�nd̄2 ·
,
where is the inverse of Ackermann’s function. For
the banded sparsity structures, the quantity d̄2 in
the associated adjacency graphs is nearly :2, inde-
pendent of the parameter n. In light of these facts,
the trends observed in the various cases in Figure 7
are in agreement with theoretical analyses. For the
banded structures (the top two rows), it can be seen
that the runtime of the star-coloring algorithm grows
linearly with n (left column), whereas the runtime
of the acyclic-coloring algorithm is slightly superlin-
ear (right column). The general trend in the random
structures is very similar, but slightly more erratic,
again due to irregular memory accesses.

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS 221

5 10 20 40 60 80 100
0

500

1,000

1,500

2,000

2,500

bd, ρ = 10, direct method

5 10 20 40 60 80 100
0

500

1,000

1,500

2,000

2,500

bd, ρ = 10, indirect method

bd, ρ = 20, direct method bd, ρ = 20, indirect method

rd, ρ = 10.98, direct method rd, ρ = 10.98, indirect method

rd, ρ = 20.99, direct method rd, ρ = 20.99, indirect method

5 10 20 40 60 80 100
0

500

1,000

1,500

2,000

5 10 20 40 60 80 100
0

500

1,000

1,500

2,000

5 10 20 40 60 80 100
0

500

1,000

1,500

2,000

5 10 20 40 60 80 100
0

500

1,000

1,500

2,000

5 10 20 40 60 80 100
0

1,000

2,000

3,000

4,000

5 10 20 40 60 80 100
0

1,000

2,000

3,000

4,000

n/1,000 n/1,000

n/1,000 n/1,000

n/1,000 n/1,000

n/1,000 n/1,000

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

R
un

tim
e

(t
as

k)
/r

un
tim

e
(F

)

Total
S2

S3
S1

Figure 7 Execution Time of the Various Steps Normalized by the Time Needed for Function Evaluation vs. Problem Size

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
222 INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS

5 10 20 40 60 80 100
0.5

1.0

1.5

2.0

2.5

3.0

3.5

× 107
R

un
tim

e
(f

)/
n

bd, ρ = 10
bd, ρ = 20
rd, ρ = 10.98
rd, ρ = 20.98

n/1,000

Figure 8 Runtime of Function Evaluation in Seconds Normalized by
Input Size n vs. n

Step S2: Computation of the Compressed
Hessian. Figure 7 shows that the time for the step
in which the compressed Hessian HS is computed
is linear in the problem dimension n. The analytical
justification for this behavior stems from two sources.
First, as mentioned earlier, the time needed for evalu-
ating the function f is linear in n. Second, the number
of columns p in a seed matrix (the number of colors
used) remained constant or nearly constant as the
problem dimension n in our experiments was varied,
both in a direct and an indirect method. Theoretically,
the complexity of computing the Hessian-seed vector
product using AD is known to be a small constant
(in the order of 10) times the time need to evaluate
the function being differentiated (Griewank 2000).
Hence, the fact that the observed runtime grew
linearly with n for both structures is consistent with
theoretical analyses.

Step S3: Recovery of the Original Hessian Entries.
As discussed in §3, the complexity of direct-
Recover1 is O�m�:
, where m is the number of nonze-
ros in the Hessian. The constant hidden in this
expression is rather small, because the computation
involved is fairly easy. Similarly, the complexity of
indirectRecover, which relies on the use of two-
colored trees, was shown to be O�m
. Due to the over-
head associated with the management of nontrivial
data structures, the hidden constant here is expected
to be considerably larger, to the extent that the exe-
cution time of the routine in practice becomes more
than the corresponding time for directRecover1. The
observed runtimes in Figure 7 clearly reflect these
facts. For a similar reason, even though directRe-
cover2 theoretically is faster than directRecover1,
we used the latter in our experiments because it is
likely to be faster in practice.

Overall Runtime. Considering all the steps to-
gether, is a direct method faster or slower than an

indirect method? The results in Figure 7 show that
the answer depends on the size and structure of
the Hessian being computed. For the random struc-
ture with nearly 20 nonzeros per row, an indirect
method is consistently observed to be faster than a
direct method. A similar statement can be made for
the banded structures of relatively small size (n up
to 20�000). For larger-size banded problems and for
many of the random matrices with nearly 10 nonzeros
per row, a direct method was observed to be faster.
These observations are in contrast to those in the opti-
mal power flow problem where an indirect method
was always found to be faster. Comparing the relative
contribution of the various steps with the total run-
time, we observe that the Hessian-seed matrix prod-
uct step (S2) is by a large margin the most expensive
in a direct method, whereas the coloring step (S1) is
slightly the dominant step in an indirect method.

Numerical Accuracy. As in the optimal power
flow problem, here again, the numerical values of
the Hessian entries obtained using indirectRecover
were observed to be of the same accuracy as the val-
ues obtained using directRecover1—a typical pair
of values obtained using the two methods matched in
all of the computed digits in double precision.

6. Conclusion
We studied compression-based calculation of sparse
Hessians using automatic differentiation. We consid-
ered the case where a matrix is compressed such
that the recovery is direct (star coloring) and the
case where the recovery requires additional arithmetic
work (acyclic coloring). Our experimental results
showed that sparsity exploitation via star and acyclic
coloring enables one affordably to compute Hessians
of dimensions that could not have been computed
otherwise. For sizes where a computation that does
not exploit sparsity is at least possible, the results
showed that the techniques render dramatic savings
in runtime. We believe savings of similar magnitude
would be attained should an AD tool other than
ADOL-C be used, because the execution time for
the Hessian-seed matrix product is likely to domi-
nate the overall runtime for any reasonable function.
The experimental results also showed that, for real-
world optimization problems, an acyclic-coloring-
based method is faster than a star-coloring-based
method, considering the overall process. Furthermore,
we showed, both analytically and experimentally, that
indirect recovery using two-colored trees is numeri-
cally as stable as direct recovery.

Acknowledgments
The authors thank Dr. Fabrice Zaoui of EDF R&D MOSSE,
Clamart, France for helping with the experiments on the
power flow problem. They also thank the anonymous

Gebremedhin et al.: Efficient Computation of Sparse Hessians Using Coloring and AD
INFORMS Journal on Computing 21(2), pp. 209–223, © 2009 INFORMS 223

referees for their valuable comments, which helped them
improve the quality of the paper. This work was supported
by the Office of Science of the U.S. Department of Energy
under the Scientific Discovery Through Advanced Comput-
ing (SciDAC) program through Grant DE-FC-0206-ER-25774
awarded to the CSCAPES Institute, by the U.S. National Sci-
ence Foundation Grant ACI 0203722, and by the German
Research Foundation Grant Wa 1607/2-1. A. H. Gebremed-
hin’s current affiliation is Department of Computer Sci-
ence and Computing Research Institute, Purdue University,
West Lafayette, IN 47907.

References
Brandstädt, A., V. B. Le, J. P. Spinrad. 1999. Graph Classes: A Sur-

vey: Monographs on Discrete Mathematics and Applications. SIAM,
Philadelphia.

Büskens, C., H. Maurer. 2001. Sensitivity analysis and real-time
optimization of parametric nonlinear programming problems.
M. Gröschel, S. Krumke, J. Rambau, eds. Online Optimization of
Large Scale Systems. Springer, Berlin, 3–16.

Coleman, T. F., J. Cai. 1986. The cyclic coloring problem and esti-
mation of sparse Hessian matrices. SIAM J. Algebraic Discrete
Methods 7(2) 221–235.

Coleman, T. F., J. J. Moré. 1984. Estimation of sparse Hessian
matrices and Graph coloring problems. Math. Programming 28
243–270.

Dancre, M., P. Tournebise, P. Panciatici, F. Zaoui. 2002. Optimal
power flow applied to state estimation enhancement. Proc. 14th
Power Systems Comput. Conf., Sevilla, Spain, Paper 3, Session
37.

Dixon, L. 1991. Use of automatic differentiation for calculating Hes-
sians and Newton steps. A. Griewank, G. Corliss, eds. Auto-
matic Differentiation of Algorithms: Theory, Implementation, and
Application, SIAM, Philadelphia, 114–125.

Gay, D. 1996. More AD of nonlinear AMPLmodels: Computing Hes-
sian information and exploiting partial separability. M. Berz,

C. Bischof, G. Corliss, A. Griewank, eds. Computational Differen-
tiation: Techniques, Applications, and Tools. SIAM, Philadelphia,
173–184.

Gebremedhin, A. H., F. Manne, A. Pothen. 2005. What color is your
Jacobian? Graph coloring for computing derivatives. SIAM Rev.
47(4) 629–705.

Gebremedhin, A. H., A. Tarafdar, D. Nguyen, A. Pothen. 2009.
ColPack: A graph coloring package for supporting sparse de-
rivative matrix computation. ACM Trans. Math. Software. In
preparation.

Gebremedhin, A. H., A. Tarafdar, F. Manne, A. Pothen. 2007. New
acyclic and star coloring algorithms with application to com-
puting Hessians. SIAM J. Sci. Comput. 29 1042–1072.

Griewank, A. 2000. Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. Frontiers in Applied Mathematics,
Number 19. SIAM, Philadelphia.

Griewank, A., D. Juedes, J. Utke. 1996. ADOL-C: A package for
the automatic differentiation of algorithms written in C/C++.
ACM Trans. Math. Software 22 131–167.

Lin, Y., S. S. Skiena. 1995. Algorithms for square roots of graphs.
SIAM J. Discrete Math. 8 99–118.

Lovász, L. 1972. A characterization of perfect graphs. J. Combin.
Theory 13 95–98.

McCormick, S. T. 1983. Optimal approximation of sparse Hessians
and its equivalence to a graph coloring problem. Math. Pro-
gramming 26 153–171.

Papadimitriou, C. 1976. The NP-completeness of the bandwidth
minimization prolem. Computing 16 263–270.

Powell, M. J. D., P. L. Toint. 1979. On the estimation of sparse
Hessian matrices. SIAM J. Numer. Anal. 16(6) 1060–1074.

Vanderbei, R., D. Shanno. 1999. An interior-point algorithm for
nonconvex nonlinear programming. Comput. Optim. Appl. 13
231–252.

Wächter, A., L. Biegler. 2006. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear pro-
gramming. Math. Programming 106(1) 25–57.

Walther, A. 2008. Computing sparse Hessians with automatic dif-
ferentiation. ACM Trans. Math. Software 34(1) Paper 3.

