
A Parallel ½-approx Weighted
Matching Algorithm

Mahantesh Halappanavar, Florin Dobrian and

Alex Pothen

CSCAPES Seminar. 16 September, 2008.

1

Outline

1. Introduction

2. Brief Survey of Parallel Matching Algorithms

3. A ½-approx Parallel Matching Algorithm

4. Computational Results

5. Conclusions and Future work

2

Graph

A graph G is a pair (V, E)

• V is a set of vertices

• E is a set of edges that represent a binary
relation on V.

– Nonbipartite / Bipartite

– Weighted / Unweighted

w

S T

3

Matching

Given a graph, a matching M is a subset of edges
such that no two edges in M are incident on
the same vertex.

Types:

• Maximum Cardinality Matching (no weights)

• Maximum Weight Matching (sum of weights)
4

Applications of Matchings

• Sparse matrix computations
– Matrix preconditioning

– Block Triangular Form

• Multilevel Graph Algorithms
– Graph partitioners

– Graph clustering

• Scheduling Problem
– High speed network switching

– Facility scheduling problem

• Bioinformatics
– Homology detection

– Structural alignment

5

Outline

1. Introduction

2. Brief Survey of Parallel Matching Algorithms

3. A ½-approx Parallel Matching Algorithm

4. Computational Results

5. Conclusions and Future work

6

A Brief Survey of Parallel Matching Algorithms

• Bipartite Graphs:

– Auction-based algorithms

– Augmentation-based algorithms

• Nonbipartite Graphs:

– Augmentation-based algorithms

Note: Non-exhaustive survey
7

Auction-based Algorithms

• Primary work:
– Dimitri P. Bertsekas, MIT

• Basic idea:
– Buyers bid for objects

– Iterative process

– Two basic approaches:
• Gauss-Seidel: one buyer at a time

• Jacobi: all buyers bid concurrently

– Reverse auctions for asymmetric problems

– Combined forward/reverse (hybrid) approaches for
performance

8

Auction-based Algorithms

• Parallel work:
– 1979: Bertsekas

– 1989: Bertsekas and Castanon

– 1989: Kempka, Kennington and Zaki (Alliant FX/8)

– 1990: Wein and Zenios : (Connection Machine, CM2)

– 1992: Goldberg, Plotkin, Shmoys and Tardos (interior point
methods)

– 2003: Reidy and Demmel (In the context of sparse direct
solvers – SuperLU)

9

Augmentation

M M

MM

MMM

 An alternating path:

 An augmenting path:

 Augmentation by Symmetric Difference :

10

Augmentation-based algorithms

• Book: 1998: Fast Parallel Algorithms for Graph
Matching Problems. Marek Karpinski and Wojciech
Rytter. Oxford Science Publications.

• 1993: Goldberg, Plotkin and Vaidya
• 1997: Stor y and S revik (MasPar MP1 and MP2)
• 1998: Haglin
• 1999: Gupta and Ying (vertex separators)
• 2006: Hougardy and Vinkemeier (path growing, ½-

approx)
• 2008: Chan, Dehne, Bose, Latzel (coarse grained

algorithms for convex bipartite graphs and trees)

Theoretical in nature.
11

Outline

1. Introduction

2. Brief Survey of Parallel Matching Algorithms

3. A ½-approx Parallel Matching Algorithm

– Introduction

– Implementation Details

4. Computational Results

5. Conclusions and Future work

12

A Serial ½-approx Algorithm: Global

• Sort-based (Avis): |)|log|(| EEO

13

A Serial ½-approx Algorithm: Global

• Sample execution of sort-based algorithm:

Sequential in nature.
14

A Serial ½-approx Algorithm: Local

• Robert Preis’s LAM algorithm: O(|E|)

15

A Serial ½-approx Algorithm: Local

• Sample execution of LAM:

Sequential in nature.
16

Assumptions for Parallelization

• Vertex-oriented data structures for graph
representation

• Graph distributed among processors via vertex
partitioning

• Owner-computes Model: each processor owns
a set of vertices that it is responsible for

17

Towards Parallelization

Pointer-based algorithm:

1. For each vertex, set a pointer to the heaviest
adjacent vertex.

2. If two vertices point to each other, then add
these (locally dominating) edges to the
matching.

3. Remove all edges incident on the matched
edges, reset the pointers, and repeat.

18

Towards Parallelization

• Sample execution of the pointer-based approach:

Parallel in nature.
19

A Worst-case Scenario

Forced sequentialness
20

Related Work (Pointer-based algorithm)

• 2004: Jaap-Henk Hoepman

– Show parallel algorithm as a variant of Preis’s algorithm

– One vertex per processor (theoretical)

– Algorithm converges in (2.|E|) messages

• 2007: Fredrik Manne and Rob Bisseling:

– Extend Hoepman’s work

– Show parallel algorithm as a variant of Luby’s algorithm

– Complexity: O(|V|d2+|E|)

– No clear description of the parallel algorithm

– BSP style
Note: Fredrik Manne independently developed the pointer-based
algorithm that he presented at SIAM Parallel Processing 2006. 21

Outline

1. Introduction

2. Brief Survey of Parallel Matching Algorithms

3. A ½-approx Parallel Matching Algorithm

– Introduction

– Implementation Details

4. Computational Results

5. Conclusions and Future work

22

Data Distribution

P0 P1

Ghost vertices
23

Distributed Graph Data structure

VtxPointer 0, 3, 6, 8, 10, 13, 16

Adjacency (3, 4, 5)(2, 4, 5)(1, 5)(0, 4)(0, 1, 3)(0, 1, 2)

EdgeWt w1, w2, w3, …

Vertex Indices 0 1 2 3 4 5

Owner Processor P0 P1 P1 P0 P0 P1

New Indices 0 3 4 1 2 5

Compressed Storage Format

Vertex distribution and renumbering
24

Distributed Graph Data structure

Processor 0: Processor Pointer 0, 3, 6

VtxPointer 0, 3, 5, 8

Adjacency (m) (1, 2, 5)(0, 2)(0, 1, 3)

EdgeWt e1, e2, e3, …

VtxWt v1, v2, v3, …

Processor 1: Processor Pointer 0, 3, 6

VtxPointer 0, 3, 5, 8

Adjacency (2, 4, 5)(3, 5)(0, 3, 4)

EdgeWt e1, e2, e3, …

VtxWt v1, v2, v3, …

Data structure on each processor

FindOwner(ghost-vtx): O(lg P); Storage: O(P) 25

A parallel algorithm:
Hoepman’s algorithm with one vertex per processor

(b)

(c)

(a)

P0

P2P1

(c’)

or

26

Our algorithm: many vertices per processor

1. Initialization: //(local computation)

– Identify locally dominant edges

– Send requests if needed

2. Computation: //(communication/computation)

– Receive messages

– Computation based on the received messages

– Send messages is needed

– Repeat until no more edges can be matched

Note: SPMD model; Distributed memory; Explicit messages 27

PART-1: Initialization

• For each vertex vi set the pointer to the heaviest neighbor
– If the heaviest neighbor is a ghost vertex, send a REQUEST

message to its owner; //Non-blocking
– If vi has at least one cross-edge incident on it:

• S  S U {vi}
• Counter[vi] = #cross-edges incident on vi

• Repeat:
– For all vertex pairs that point to each other, add the

corresponding edges to the matching
– Remove edges incident on the matched edges (send SUCCESS

messages)
– Reset the pointers (send messages if needed)
– Repeat until no more edges can be added to the matching

28

PART-2: Computation

• WHILE (S ≠ NULL) DO
– Receive a Message //Blocking; from any source

– Process the Message based on type
• Request, Success, or Failure

• Add to matching, and remove edges incident (send SUCCESS
messages)

• Reset pointers for vertices that were pointing to the matched
vertices (Send messages if needed)

– Update:
• Counter[vi]: Decrement the counter

• S (remove vi from S when Counter[vi]=0)

• Send FAILURE messages if some vertex cannot be matched

MPI standard requires that every SEND be matched with a RECEIVE. Therefore, we need set S
and Counter[v] to keep track of all the messages that need to be received. 29

Communication Pattern

(a) (b) (c)

• Our scheme needs ≤ 3|EdgeCut| messages

•Can be optimized to 2|EdgeCut| messages

30

MPI: Buffered Sends

Source: Dr. Gerhard Wellein (RRZE) et al.

We also have an implementation with MPI_Isend() with similar performance. 31

Graph algorithms: Issues & Challenges

• Load balancing:
– Pre-distributed data; 1D V/s 2D; performance of partitioners

• Locality:
– Cache-aware V/s Cache-oblivious

• Ghost vertices:
– Memory V/s Performance

“… computation done by 32,768 processors on BlueGene/L
could be done by five to 10 processors of an MTA-2 with

sufficient memory.”
- Bruce Hendrickson and Jonathan Berry, “Graph Analysis with High-Performance

Computing”, Computing in Science and Engineering, IEEE and AIP, March/April
2008.

32

Outline

1. Introduction

2. Brief Survey of Parallel Matching Algorithms

3. A ½-approx Parallel Matching Algorithm

4. Computational Results

– Performance of serial ½-approx algorithm

– Performance of parallel ½-approx algorithm

5. Conclusions and Future work

33

Platform Details

• Zorka Compute Cluster:
• Compute Node: Two dual core 3.0 GHz Intel Xeon

(4 CPUs); 8 GB RAM

• Total Nodes: 40 (160 cores)

• Network: Infiniband 4X (20 Gbits/s)

• Software:
• Intel C++ compilers (–O2 –axT)

• MVAPICH2, with 4 processes per node (wrap
around if #processes > #cores)

We see about 20% performance difference between GigE and Infiniband.
34

Test set 1: Matrices from Tim Davis Collection
Name #Rows #Cols #nnz

Circuit Simulation
Rajat16 94,294 94,294 476,766
Rajat21 411,676 411,676 1,876,011
Rajat29 643,994 643,994 3,760,246
Rajat30 643,994 643,994 6,175,244
Rajat31 4,690,002 4,690,002 20,316,253
ASIC_320ks 321,671 321,671 1,316,085
ASIC_680k 682,862 682,862 2,638,997
G3_circuit 1,585,478 1,585,478 7,660,826

Structural Engineering
bodyy6 19,366 19,366 134,208
bcsstk38 8,032 8,032 355,460
bcsstk35 30,237 30,237 1,450,163
bcsstk39 46,772 46,772 2,060,662
crystk03 24,696 24,696 1,751,178
ct20stif 52,329 52,329 2,600,295
ptwk 217,918 217,918 11,524,432

Fluid Dynamics
Pres_Poisson 14,822 14,822 715,804
af23560 23,560 23,560 460,598

Electrical Engineering
onetone2 36,057 36,057 222,596
twotone 120,750 120,750 1,206,265
pre2 659,033 659,033 5,834,044

Name #Rows #Cols #nnz

DNA Electrophoresis

cage10 11,397 11,397 150,645

cage11 39,082 39,082 559,722

cage12 130,228 130,228 2,032,536

cage13 445,315 445,315 7,479,343

cage14 1,505,785 1,505,785 27,130,349

cage15 5,154,859 5,154,859 99,199,551

Chemical Engineering

meg1 2,904 2,904 58,142

bayer04 20,545 20,545 85,537

bayer01 57,735 57,735 275,094

Economic Models

g7jac040 11,790 11,790 107,383

g7jac080 23,670 23,670 259,648

g7jac160 47,430 47,430 564,952

g7jac200 59,310 59,310 717,620

Symmetric Indefinite

F2 71,505 71,505 5,294,285

F1 343,791 343,791 26,837,113

35

Performance of Sequential Algorithm

• Exact algorithm:
– Perfect matching of maximum weight (similar to the

algorithm implemented in MC64)
– Binary heap data structure
– Greedy initialization is critical for performance
– O(|V||E| + |V|2log|V|)

• Approximation algorithm:
– Pointer-based algorithm
– O(|V|d2 + |E|)

• Why?
– Maximum weight matching is very slow
– Context: Sparse matrix preconditioners

Comparison?

36

Performance: Execution Time

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Lo
g

(E
xa

ct
 T

im
e

 /
 A

p
p

ro
x

Ti
m

e
)

Speedup

Speedup

Matrices sorted by name 

The approximation algorithm is very fast. 37

Outline

1. Introduction

2. Brief Survey of Parallel Matching Algorithms

3. A ½-approx Parallel Matching Algorithm

4. Computational Results

– Performance of serial ½-approx algorithm

– Performance of parallel ½-approx algorithm

5. Conclusions and Future work

38

Rajat31: # NVtx: 9,380,004; #Edge: 20,316,253

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

Matrix visualization from UF Sparse Matrix Collection
Min and Max times are the shortest and longest
times on any given process (core). Avg is the
average time of all the processes. 39

G3_Circuit: # NVtx: 3,170,956; #Edge: 4,623,152

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

40

Bayer01: #Vtx=115,470; #Edges= 277,774

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1 2 3 4 5 6 7 8 9 10 11

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

41

ASIC_320ks: #Vtx=643,342; #Edges= 1,827,807

1.00E-02

1.00E-01

1.00E+00

1 2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

42

bcsstk39: #Vtx=38,732; #Edges= 77,057

1.00E-03

1.00E-02

1.00E-01

1 2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

43

g7jac200: #Vtx=118,620; #Edges= 837,936

1.00E-02

1.00E-01

1.00E+00

1 2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

 c
o

m
p

u
te

 t
im

e
 in

 s
e

co
n

d
s

of cores

min(s)

max(s)

avg(s)

44

meg1: #Vtx=5,808; #Edges= 58,142

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

45

crystk03: #Vtx=49,392; #Edges= 887,937

1.00E-02

1.00E-01

1 2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

46

Synthetic Graph: SSCA#2

Graph: #Vtx: 2,097,152; #Edge: 63,148,387
Original graph generated with GT-Graph Generator.
Graph modified (treat it as bipartite graph) and duplicates eliminated.

Visualizing SSCA#2 graphs using
Fiedler coordinates; Source:
ctwatch.org

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1 2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

1.00E+00

1.00E+01

1.00E+02

1.00E+03

2 4 8 16 32 64 80 100 128 160

Sp
e

e
d

U
p

=
Se

ri
al

 T
im

e
/P

ar
al

le
l A

vg
Ti

m
e

of cores

SpeedUp

Super linear Speedup? Most probably due to cache effects
than an inefficient serial implementation. 47

Synthetic Graph: Random Graph

Graph: #Vtx: 500,000; #Edge: 1,500,000
Original graph generated with GT-Graph Generator.
Graph modified (treated as a bipartite graph) and duplicates eliminated.

1.00E-01

1.00E+00

1.00E+01

2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

48

Synthetic Graph: Random Graph

Graph: #Vtx: 1,000,000; #Edge: 2,250,000
Original graph generated with GT-Graph Generator.
Graph modified (treated as a bipartite graph) and duplicates eliminated.

1.00E-01

1.00E+00

1.00E+01

2 4 8 16 32 64 80 100 128 160

Lo
g

o
f

co
m

p
u

te
 t

im
e

 in
 s

e
co

n
d

s

of cores

min(s)

max(s)

avg(s)

49

Jumpshot Pictures

• Input: Rajat31 (#Vtx: 9,380,004;
#Edges: 20,316,253)

• Edgecut: 36,998; Transfer: 2.78 s;
Weight: 6.25e+07; Cardinality:
4,688,751;

• Compute Time: Min: 2.79e-02;
Max: 3.09e-02; Avg (32): 3.73e-02
seconds.

50

Entire Execution

Initialization and Graph
partitioning with Metis

Data
transfer Matching

Communicate
results 51

Close-up: Communication

Legand: Purple = B_Send; Green = Receive
52

Closeup: Communication

Legand: Purple = B_Send; Green = Receive
53

Close-up: Communication

Long green bars: Waiting to receive  scope for improvement
(speculation algorithms)

54

Outline

1. Introduction

2. Brief Survey of Parallel Matching Algorithms

3. A ½-approx Parallel Matching Algorithm

4. Computational Results

5. Conclusions and Future work

55

Contributions

• Extended the existing work

• Design of asynchronous communication
scheme

• Efficient implementation for distributed
memory system:

– MatchBoxP

– C++, STL, MPI

56

Conclusions

• Speedup is not a right goal for parallelization

• Graph structure and graph partitioning are
critical for performance (but, probably, cannot
be controlled)

• Memory limitations may change data
structures, and therefore, performance

• One sided communications will probably help
when used on systems with fast interconnects

57

Future Work

• Tests for performance on the DOE Leadership-
class machines (NERSC)

• Massive graphs

• Software engineering: data structures, error
handling, documentation, etc.

THANK YOU !

We would like to thank Assefaw Gebremedhin for his time and
suggestions to improve this work.

58

Performance: Cardinality & Weight

50

60

70

80

90

100

110

120

130

140

150

160

170

1 2 3 4 5 6 7 8 9 10111213141617181920212223242526272829303132333435

%
G

o
o

d
n

e
ss

 (
A

p
p

ro
x/

Ex
ac

t*
1

0
0

)
Performance: Cardinality and Weight

Cardinality

Weight

Matrices sorted by name 
59

