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Graph

A graph G is a pair (V, E)

• V is a set of vertices

• E is a set of edges that represent a binary 
relation on V.

– Nonbipartite / Bipartite

– Weighted / Unweighted
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Matching

Given a graph, a matching M is a subset of edges 
such that no two edges in M are incident on 
the same vertex.

Types:

• Maximum Cardinality Matching (no weights)

• Maximum Weight Matching (sum of weights)
4



Applications of Matchings

• Sparse matrix computations
– Matrix preconditioning

– Block Triangular Form

• Multilevel Graph Algorithms
– Graph partitioners

– Graph clustering

• Scheduling Problem
– High speed network switching

– Facility scheduling problem

• Bioinformatics
– Homology detection

– Structural alignment
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A Brief Survey of Parallel Matching Algorithms

• Bipartite Graphs:

– Auction-based algorithms

– Augmentation-based algorithms

• Nonbipartite Graphs:

– Augmentation-based algorithms

Note: Non-exhaustive survey
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Auction-based Algorithms

• Primary work: 
– Dimitri P. Bertsekas, MIT

• Basic idea:
– Buyers bid for objects

– Iterative process

– Two basic approaches:
• Gauss-Seidel: one buyer at a time

• Jacobi: all buyers bid concurrently

– Reverse auctions for asymmetric problems

– Combined forward/reverse (hybrid) approaches for 
performance
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Auction-based Algorithms

• Parallel work:
– 1979: Bertsekas

– 1989: Bertsekas and Castanon

– 1989: Kempka, Kennington and Zaki (Alliant FX/8)

– 1990: Wein and Zenios : (Connection Machine, CM2)

– 1992: Goldberg, Plotkin, Shmoys and Tardos (interior point 
methods)

– 2003: Reidy and Demmel (In the context of sparse direct 
solvers – SuperLU)
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Augmentation

M M

MM

MMM

 An alternating path:

 An augmenting path:

 Augmentation by Symmetric Difference :
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Augmentation-based algorithms

• Book: 1998: Fast Parallel Algorithms for Graph 
Matching Problems. Marek Karpinski and Wojciech
Rytter. Oxford Science Publications.

• 1993: Goldberg, Plotkin and Vaidya
• 1997: Stor y and S revik (MasPar MP1 and MP2)
• 1998: Haglin
• 1999: Gupta and Ying (vertex separators)
• 2006: Hougardy and Vinkemeier (path growing, ½-

approx)
• 2008: Chan, Dehne, Bose, Latzel (coarse grained 

algorithms for convex bipartite graphs and trees)

Theoretical in nature.
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A Serial ½-approx Algorithm: Global

• Sort-based (Avis): |)|log|(| EEO
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A Serial ½-approx Algorithm: Global

• Sample execution of sort-based algorithm:

Sequential in nature.
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A Serial ½-approx Algorithm: Local

• Robert Preis’s LAM algorithm: O(|E|)
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A Serial ½-approx Algorithm: Local

• Sample execution of LAM:

Sequential in nature.
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Assumptions for Parallelization

• Vertex-oriented data structures for graph 
representation

• Graph distributed among processors via vertex 
partitioning

• Owner-computes Model: each processor owns 
a set of vertices that it is responsible for
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Towards Parallelization

Pointer-based algorithm:

1. For each vertex, set a pointer to the heaviest 
adjacent vertex.

2. If two vertices point to each other, then add 
these (locally dominating) edges to the 
matching.

3. Remove all edges incident on the matched 
edges, reset the pointers, and repeat.
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Towards Parallelization

• Sample execution of the pointer-based approach:

Parallel in nature.
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A Worst-case Scenario

Forced sequentialness
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Related Work (Pointer-based algorithm)

• 2004: Jaap-Henk Hoepman

– Show parallel algorithm as a variant of Preis’s algorithm

– One vertex per processor (theoretical)

– Algorithm converges in (2.|E|) messages

• 2007: Fredrik Manne and Rob Bisseling:

– Extend Hoepman’s work

– Show parallel algorithm as a variant of Luby’s algorithm

– Complexity: O(|V|d2+|E|)

– No clear description of the parallel algorithm

– BSP style
Note: Fredrik Manne independently developed the pointer-based 
algorithm that he presented at SIAM Parallel Processing 2006. 21



Outline

1. Introduction

2. Brief Survey of Parallel Matching Algorithms

3. A ½-approx Parallel Matching Algorithm

– Introduction

– Implementation Details

4. Computational Results

5. Conclusions and Future work

22



Data Distribution

P0 P1

Ghost vertices
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Distributed Graph Data structure

VtxPointer 0, 3, 6, 8, 10, 13, 16

Adjacency (3, 4, 5)(2, 4, 5)(1, 5)(0, 4)(0, 1, 3)(0, 1, 2)

EdgeWt w1, w2, w3, …

Vertex Indices 0 1 2 3 4 5

Owner Processor P0 P1 P1 P0 P0 P1

New Indices 0 3 4 1 2 5

Compressed Storage Format

Vertex distribution and renumbering
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Distributed Graph Data structure

Processor 0: Processor Pointer 0, 3, 6

VtxPointer 0, 3, 5, 8

Adjacency (m) (1, 2, 5)(0, 2)(0, 1, 3) 

EdgeWt e1, e2, e3, … 

VtxWt v1, v2, v3, …

Processor 1: Processor Pointer 0, 3, 6

VtxPointer 0, 3, 5, 8

Adjacency (2, 4, 5)(3, 5)(0, 3, 4) 

EdgeWt e1, e2, e3, … 

VtxWt v1, v2, v3, …

Data structure on each processor

FindOwner(ghost-vtx): O(lg P); Storage: O(P) 25



A parallel algorithm: 
Hoepman’s algorithm with one vertex per processor

(b)

(c)

(a)

P0

P2P1

(c’)

or
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Our algorithm: many vertices per processor

1. Initialization:  //(local computation)

– Identify locally dominant edges

– Send requests if needed

2. Computation: //(communication/computation)

– Receive messages

– Computation based on the received messages

– Send messages is needed

– Repeat until no more edges can be matched

Note: SPMD model; Distributed memory; Explicit messages 27



PART-1: Initialization

• For each vertex vi set the pointer to the heaviest neighbor
– If the heaviest neighbor is a ghost vertex, send a REQUEST

message to its owner;   //Non-blocking
– If vi has at least one cross-edge incident on it: 

• S  S U {vi} 
• Counter[vi] = #cross-edges incident on vi

• Repeat: 
– For all vertex pairs that point to each other, add the 

corresponding edges to the matching
– Remove edges incident on the matched edges (send SUCCESS 

messages)
– Reset the pointers (send messages if needed)
– Repeat until no more edges can be added to the matching
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PART-2: Computation

• WHILE (S ≠ NULL) DO
– Receive a Message   //Blocking; from any source

– Process the Message based on type
• Request, Success, or Failure

• Add to matching, and remove edges incident (send SUCCESS 
messages)

• Reset pointers for vertices that were pointing to the matched 
vertices (Send messages if needed)

– Update:
• Counter[vi]: Decrement the counter

• S  (remove vi from S when Counter[vi]=0)

• Send FAILURE messages if some vertex cannot be matched

MPI standard requires that every SEND be matched with a RECEIVE. Therefore, we need set S 
and Counter[v] to keep track of all the messages that need to be received. 29



Communication Pattern

(a) (b) (c)

• Our scheme needs ≤ 3|EdgeCut| messages

•Can be optimized to 2|EdgeCut| messages
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MPI: Buffered Sends

Source: Dr. Gerhard Wellein (RRZE) et al. 

We also have an implementation with MPI_Isend() with similar performance. 31



Graph algorithms: Issues & Challenges

• Load balancing:
– Pre-distributed data; 1D V/s 2D; performance of partitioners

• Locality:
– Cache-aware V/s Cache-oblivious

• Ghost vertices:
– Memory V/s Performance

“… computation done by 32,768 processors on BlueGene/L 
could be done by five to 10 processors of an MTA-2 with 

sufficient memory.”
- Bruce Hendrickson and Jonathan Berry, “Graph Analysis with High-Performance 

Computing”, Computing in Science and Engineering, IEEE and AIP, March/April 
2008.
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Platform Details

• Zorka Compute Cluster:
• Compute Node: Two dual core 3.0 GHz Intel Xeon 

(4 CPUs); 8 GB RAM

• Total Nodes: 40  (160 cores)

• Network: Infiniband 4X (20 Gbits/s)

• Software:
• Intel C++ compilers (–O2 –axT)

• MVAPICH2, with 4 processes per node (wrap 
around if #processes > #cores)

We see about 20% performance difference between GigE and Infiniband.
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Test set 1: Matrices from Tim Davis Collection
Name #Rows #Cols #nnz

Circuit Simulation
Rajat16 94,294 94,294 476,766
Rajat21 411,676 411,676 1,876,011
Rajat29 643,994 643,994 3,760,246
Rajat30 643,994 643,994 6,175,244
Rajat31 4,690,002 4,690,002 20,316,253
ASIC_320ks 321,671 321,671 1,316,085
ASIC_680k 682,862 682,862 2,638,997
G3_circuit 1,585,478 1,585,478 7,660,826

Structural Engineering
bodyy6 19,366 19,366 134,208
bcsstk38 8,032 8,032 355,460
bcsstk35 30,237 30,237 1,450,163
bcsstk39 46,772 46,772 2,060,662
crystk03 24,696 24,696 1,751,178
ct20stif 52,329 52,329 2,600,295
ptwk 217,918 217,918 11,524,432

Fluid Dynamics
Pres_Poisson 14,822 14,822 715,804
af23560 23,560 23,560 460,598

Electrical Engineering
onetone2 36,057 36,057 222,596
twotone 120,750 120,750 1,206,265
pre2 659,033 659,033 5,834,044

Name #Rows #Cols #nnz

DNA Electrophoresis

cage10 11,397 11,397 150,645

cage11 39,082 39,082 559,722

cage12 130,228 130,228 2,032,536

cage13 445,315 445,315 7,479,343

cage14 1,505,785 1,505,785 27,130,349

cage15 5,154,859 5,154,859 99,199,551

Chemical Engineering

meg1 2,904 2,904 58,142

bayer04 20,545 20,545 85,537

bayer01 57,735 57,735 275,094

Economic Models

g7jac040 11,790 11,790 107,383

g7jac080 23,670 23,670 259,648

g7jac160 47,430 47,430 564,952

g7jac200 59,310 59,310 717,620

Symmetric Indefinite

F2 71,505 71,505 5,294,285

F1 343,791 343,791 26,837,113
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Performance of Sequential Algorithm

• Exact algorithm:
– Perfect matching of maximum weight (similar to the 

algorithm implemented in MC64)
– Binary heap data structure
– Greedy initialization is critical for performance
– O(|V||E| + |V|2log|V|)

• Approximation algorithm:
– Pointer-based algorithm
– O(|V|d2 + |E|)

• Why?
– Maximum weight matching is very slow
– Context: Sparse matrix preconditioners

Comparison?
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Performance: Execution Time
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The approximation algorithm is very fast. 37
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Rajat31:  # NVtx: 9,380,004;   #Edge: 20,316,253
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Matrix visualization from UF Sparse Matrix Collection
Min and Max times are the shortest and longest 
times on any given process (core). Avg is the 
average time of all the processes. 39



G3_Circuit:  # NVtx: 3,170,956;   #Edge: 4,623,152
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Bayer01:  #Vtx=115,470; #Edges= 277,774
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ASIC_320ks:  #Vtx=643,342; #Edges= 1,827,807
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bcsstk39:  #Vtx=38,732; #Edges= 77,057
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g7jac200:  #Vtx=118,620; #Edges= 837,936
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meg1:  #Vtx=5,808; #Edges= 58,142
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crystk03:  #Vtx=49,392; #Edges= 887,937
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Synthetic Graph: SSCA#2

Graph:  #Vtx: 2,097,152;   #Edge: 63,148,387
Original graph generated with GT-Graph Generator.
Graph modified (treat it as bipartite graph) and duplicates eliminated.

Visualizing SSCA#2 graphs using 
Fiedler coordinates; Source:  
ctwatch.org
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Super linear Speedup? Most probably due to cache effects 
than an inefficient serial implementation. 47



Synthetic Graph: Random Graph

Graph:  #Vtx: 500,000;   #Edge: 1,500,000
Original graph generated with GT-Graph Generator.
Graph modified (treated as a bipartite graph) and duplicates eliminated.
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Synthetic Graph: Random Graph

Graph:  #Vtx: 1,000,000;   #Edge: 2,250,000
Original graph generated with GT-Graph Generator.
Graph modified (treated as a bipartite graph) and duplicates eliminated.
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Jumpshot Pictures

• Input: Rajat31 (#Vtx: 9,380,004; 
#Edges: 20,316,253)

• Edgecut: 36,998;  Transfer: 2.78 s;   
Weight: 6.25e+07;    Cardinality: 
4,688,751; 

• Compute Time:  Min: 2.79e-02;    
Max: 3.09e-02;  Avg (32): 3.73e-02 
seconds.
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Entire Execution

Initialization and Graph 
partitioning with Metis

Data 
transfer Matching

Communicate 
results 51



Close-up: Communication

Legand:  Purple = B_Send; Green = Receive
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Closeup: Communication

Legand:  Purple = B_Send; Green = Receive
53



Close-up: Communication

Long green bars: Waiting to receive  scope for improvement 
(speculation algorithms)
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Contributions

• Extended the existing work

• Design of asynchronous communication 
scheme

• Efficient implementation for distributed 
memory system: 

– MatchBoxP

– C++, STL, MPI
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Conclusions

• Speedup is not a right goal for parallelization

• Graph structure and graph partitioning are 
critical for performance (but, probably, cannot 
be controlled)

• Memory limitations may change data 
structures, and therefore, performance

• One sided communications will probably help 
when used on systems with fast interconnects
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Future Work

• Tests for performance on the DOE Leadership-
class machines (NERSC)

• Massive graphs

• Software engineering: data structures, error 
handling, documentation, etc.

THANK YOU !

We would like to thank Assefaw Gebremedhin for his time and 
suggestions to improve this work.
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Performance: Cardinality & Weight
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Matrices sorted by name 
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