Parallelizing Gauss-Seidel Using Full Sparse Tiling

Michelle Mills Strout

CSCAPES Seminar May 15, 2007

Goal: Make computations over meshes fast

- Iterative smoothers such as Gauss-Seidel dominate the execution time of finite element applications
- Need to effectively utilize the memory hierarchy
- Performance should scale to multiple processors

Full Sparse Tiling to the Rescue!

• Problem

 Compile-time data reordering and computation scheduling to improve data locality and parallelism is not possible due to irregular memory references A[B[i]]

• Solution

- Inspector/executor strategies perform data and computation reordering at runtime
- Full sparse tiling is one such strategy that improves performance by exploiting parallelism, intra-iteration data reuse, and inter-iteration data reuse

Gauss-Seidel Iteratively Solves Au = f

Knowledge to Go Places

- u is a vector of unknowns
- A is a sparse matrix stored in the compressed sparse row format (CSR)

Gauss-Seidel Iteration Space

Performance Improvement Opportunities

Intra-iteration reuse

Inter-iteration reuse

Parallelism

Turn Data Reuse into Data Locality

Spatial locality occurs when memory locations mapped to the same cache-line are used before the cache line is evicted \downarrow \downarrow

Temporal locality occurs when the same memory location is reused before its cache line is evicted

Full Sparse Tiling

• Breaks up computation into pieces

Knowledge to Go Places

- Each piece has intra and inter-iteration data locality
- Some pieces can be executed in parallel

Talk Outline

- Overview
- Parallelizing Jacobi with the owner computes method or full sparse tiling
- Increasing the parallelism in full sparse tile schedules
- Extra work needed to handle Gauss-Seidel
- Experimental Results

Jacobi: similar yet simpler

```
do iter = 1, T
   -do i = 1, R
        u(i) = f(i)
         do p = ia(i), ia(i+1) - 1
             j = ja(p)
             if (j != i) then
              \rightarrow u(i) -= a(p)*tmp (j)
             else
                 diag = a(p)
             endif
        enddo
        u(i) = u(i)/diag
   • enddo
    do i = 1, R
         tmp(i) = u(i)
    enddo
enddo
```


- data dependences not known until runtime
- no intra-iteration dependences
- i loop is a reduction, therefore parallelizable

Parallelize with Owner Computes Method

At each convergence iteration ...

- each partition receives data from previous convergence iteration
- each partition executes in parallel
- each partition sends data

Locality in Owner Computes Method

- Intra-iteration locality
 - schedule by sub-part
 - reorder data for
 consecutive order in
 sub-parts
- NO Inter-iteration locality, main partitions don't fit in cache

Jacobi Iteration Space

• Create seed

partitioning at *iter* = 2

- Create seed
 - partitioning at *iter* = 2
- Grow tiles to *iter* = 1 based on ordering of partitions

- Create seed
 - partitioning at *iter* = 2
- Grow tiles to *iter* = 1 based on ordering of partitions

- Create seed
 - partitioning at *iter* = 2
- Grow tiles to *iter* = 1 based on ordering of partitions

Locality in Full Sparse Tiled Jacobi

• Intra-iteration

locality achieved by consecutively ordering matrix graph nodes within a seed partition

• Inter-iteration

locality achieved with tile-by-tile execution

Parallelism in Full Sparse Tiled Jacobi

Average parallelism = (# tiles) / (# tiles in critical path) = 6 / 5 = 1.2

How can we increase parallelism between tiles?

- Order that tile growth is performed matters
- Best is to first grown tiles whose seed partitions are not adjacent

Improving Average Parallelism Using Coloring

• Create a partition graph

Improving Average Parallelism Using Coloring

- Create a partition graph
- Color the partition graph

Improving Average Parallelism Using Coloring

- Create a partition graph
- Color the partition graph
- Renumber partitions consecutively by color

Grow Using New Partition Order

- Renumber the seed partition cells based on coloring
- Grow tiles using new ordering
- Notice that tiles 0 and 1 may be executed in parallel

Re-grow Using New Partition Order

- Renumber the seed partition cells based on coloring
- Grow tiles using new ordering
- Notice that tiles 0 and 1 may be executed in parallel
- Tiles 4 and 5 may also be executed in parallel

Average Parallelism is Improved

Average parallelism = (# tiles) / (# tiles in critical path) = 6 / 3 = 2

Improvement with Real Matrix Graphs

Gauss-Seidel

- Loop carried dependences within convergence iteration as well as between them
- Dependences depend on the ordering of the nodes
- Nodes can be reordered apriori

Owner Computes Method Nodal Gauss-Seidel [Adams 2001]

- Renumbers nodes (rows/columns in sparse matrix)
- Make data dependences between main partitions consistent

Owner Computes Method Nodal Gauss-Seidel [Adams 2001]

- Renumbers nodes (rows/columns in sparse matrix)
- Make data dependences between main partitions consistent
- Subpartition for better parallelism

Full Sparse Tiled Gauss-Seidel

- Tile growth creates

 and maintains a partial
 ordering between
 nodes in matrix graph
- Reorder nodes so that partial ordering is maintained

Experimental Methodology

- Baseline is Gauss-Seidel implemented CSR and uses provided ordering
- Owner computes implementation
 - Partition matrix graph into equal-sized cells for each processor
 - Sub-partition and reorder on each processor for intraiteration locality
 - Violate intra-iteration dependences for an idealistic parallel efficiency
- Full sparse tiling implementation

Overhead of Full Sparse Tiling

Blue Horizon, Gauss-Seidel with numiter=2, Parallel Reschedule									
		Savings/Execution (sec)			Break Even				
Input Matrix	Overhead(sec)	n=2	n=4	n=8	n=2	n=4	n=8		
Matrix9	2.03	0.02	0.03	0.04	90	63	57		
Matrix12	13.69	0.14	0.20	0.21	96	71	66		
Sphere150K	31.41	0.17	0.26	0.29	191	120	110		
PipeOT15mill	48.28	0.39	0.52	0.58	125	93	83		
Wing903K	116.86	0.65	0.96	1.10	182	122	107		

Percentage Time of Overhead							
Input Matrix	Partitioning	Data Remapping					
Matrix9	79%	14%					
Matrix12	72%	13%					
Sphere150K	<mark>68%</mark>	17%					
PipeOT15mill	81%	10%					
Wing903K	84%	10%					

Experimental Results on IBM Blue Horizon

Blue Horizon, GS numiter=2

Experimental Results on Sun Ultra

Conclusions

- Full sparse tiling exploits parallelism, intra-iteration data reuse, and inter-iteration data reuse
- Coloring the partition graph to number seed partitions improves the average parallelism in the tile dependence graph
- On shared memory processors, full sparse tiling can outperform owner-computes methods when enough parallelism is present

Future Work

- Develop distributed memory execution framework for full sparse tiling
- Scaling studies for distributed memory execution
- Apply to other benchmarks and kernels
 - Jacobi
 - Moldyn
 - Molecular dynamics benchmark from Cornell
- Automate generation of inspectors and executors

PETSc - Portable Extensible Toolkit for Scientific Computing

- Parallel Partial Differential Equations (PDE) solvers using Object Oriented Programming (OOP)
- Used in many applications: CFD, Optimization, Biology, Finite Element Analysis, etc.
- Software architecture contains many aspects
 - Usage levels: beginner, intermediate, etc.
 - Many Krlov methods, preconditioners, and sparse matrix formats
 - Profiling, logging, options, etc.

Sparse Tiling Extension to PETSc (STPetsc)

- How should run-time reordering transformations be incorporated in existing domain-specific libraries?
- Interface
 - Beginner: Call MatUseST_SeqAIJ(A)
 - Intermediate: MatSparseTilingCreate(), etc.
- Implementation
 - Sparse tiling *inspector* occurs upon first call to SOR or before SLESSolve
 - SOR for SeqAIJ (CSR) matrix format is transformed into a sparse tiling *executor*

Cone Matrix on Pentium 4 2GHz (N=22,032, NZ=1,433,068)

Data Reordering Affects Convergence Cone Matrix

Sphere Matrix on Pentium 4 2GHz (N=154,938, NZ=11,508,390)

Framework Elements [Kelly & Pugh 95] [Pugh & Wonnacott 95]

Data Dependences

Compile-time:

$$D_{I \rightarrow I} = \{ [i] \rightarrow [j] \mid (0 \le i < j \le 7) \land (i = b(j) \lor j = b(i)) \}$$

Run-time:

Key Insights for Composing Run-time Reordering Transformations

- The inspectors *traverse* the data mappings and/or the data dependences
- We can *express* how the data mappings and data dependences will change
- Subsequent inspectors *traverse the new* data mappings and data dependences

Data Mappings and Data Dependences for MOLDYN

for ts=1,Tfor i=1, NZ[i] = ...endfor for j=1, M... = Z[l[j]] $\ldots = Z[r[j]]$ endfor endfor

Data Mapping for i loop $M_{I_0 \rightarrow Z_0} = \{[i] \rightarrow [i]\}$

Data Mapping for j loop $M_{J_0 \to Z_0} = \{ [j] \to [i] | (i = l(j)) \lor (i = r(j)) \}$

Data Dependences between i and j loop $D_{I_0 \rightarrow J_0} = \{[i] \rightarrow [j] | (i = l(j)) \lor (i = r(j))\}$

Composing the Inspector at Compile-time for MOLDYN

$M_{J_0 \to Z_0} = \{ [j] \to [i] (i = l(j)) \lor (i = r(j)) \}$ $R_{Z_0 \to Z_1} = T_{I_0 \to I_1} = \{ [i] \to [\sigma(i)] \}$	1.	Traverse $M_{J_0 \rightarrow Z_0}$ to generate data reordering function σ
$\begin{split} M_{J_0 \to Z_1} &= \{ [j] \to [\sigma(i)] \mid (i = l(j)) \lor (i = r(j)) \} \\ T_{J_0 \to J_1} &= \{ [j] \to [\delta(j)] \} \end{split}$	2.	Traverse $M_{J_0 \rightarrow Z_1}$ to generate iteration reordering function δ
$\begin{split} D_{I_1 \rightarrow J_1} &= \{ [\sigma(i)] \rightarrow [\delta(j)] \mid (i = l(j)) \lor (i = r(j)) \} \\ T_{I_1 \rightarrow I_2} &= \{ [i_1] \rightarrow [\vartheta(1, i_1), 1, i_1] \} \\ T_{J_1 \rightarrow J_2} &= \{ [j_1] \rightarrow [\vartheta(2, j_1), 2, j_1] \} \end{split}$	3.	Full sparse tile by traversing $D_{I_1 \rightarrow J_1}$ to generate tiling ϑ