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* Enabling inherent parallelization in solvers

* mathematical programming
e LU factorization
* QR factorization

* Improving performance of sparse matrix-vector multiply
* Finding fill-reducing orderings via nested-dissection

* Also, Sparse Matrix is a good abstraction for modeling
input-output interactions, can be used to model the
workload and data partitioning of many other
applications!
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Hypergraphs: Matrix Partitioning
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* Matrix partitioning:
e 1D partitioning (by rows or by columns),

e 2D partitioning (jagged, checkerboard, nonzero-based, or orthogonal
recursive).

* Hypergraph models (vertices represent data units/computations to
partition, hyperedges represent dependencies): row-net, column-
net, fine-grain (nonzero-based) models.

* Partitioning algorithms based on hypergraph models: Rowwise,
columnwise, nonzero-based, jagged-like, checkerboard-like,
Mondrian.

* Key point: two useful cutsize definitions matches
* the total communication volume in y & Ax computations,
* minimization of border size (number of rows/columns in the border).
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* A hypergraph #'= (7, ) is a set of vertices 7’and a set
of hyperedges (nets) i

* Anetn € N is asubset of vertices.
* A cost c(n) is associated with each net .
* A weight w(v) is associated with each vertex v.

* An undirected graph can be seen as a hypergraph where
each net contains exactly two vertices.
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* K-way hypergraph partition: II={7/, V,, ..., ¥}
° Vis nonempty subset of 1} i.e., 1, C ¥,
e parts are pairwise disjoint, i.e., ((/@ﬂ V=0,

* union of K parts is equal to 7 i.e., U Ve=7.
° InII

* anet that has at least one pin in a part is said to connect that part
 connectivity N(n) of a net n is the number of parts connected by n

* Objective:
* minimize cutsize(IT) = ZnEN c(n) (N(n)-1) or
* minimize cutsize(II) = Zne NA AN >1 €(7)

e Constraint:

© W= W, (1+¢) where f(/l/@: weight of part 7, € : max. imbalance ratio
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Tools Applications

hMETIS (Karypis and Kumar, Univ. e VLSI: circuit partitioning,
Minnesota), * Scientific computing: matrix

* MLPart (Caldwell, Kahng, and partitioning, ordering, cryptology,
Markov, UCLA/UMich), etc.,

* Mondriaan (Bisseling and Meesen, * Parallel/distributed computing:
Utrecht Univ.), volume rendering, data aggregation,

e Parkway (Trifunovic and Knottenbelt, declustering/clustering, scheduling,
Imperial Coll. London), * Software engineering, information

*  PaToH (Catalyurek and Aykanat, retrieval, processing spatial join
Bilkent Univ.), queries, etc.

e Zoltan-PHG (Devine, Boman, Heaphy,
Bisseling, and Catalyurek, Sandia

National Labs.).
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Taxonomy of Sparse Partitioning
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Row-Column Parallel
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1. Send the local input-vector entries x; to those processors
that has at least one nonzero in column j.

2. Compute the scalar products a; x; for the local nonzeros,

i.e., the nonzeros for which map(a;) = P, and accumulate
the results y for the same row index i.

3. Send local nonzero partial results y* to the processor
mapl(y,) # P,

4. Add the partial y*. results received to compute the final
result y, = 2 y¢ for which map(y,) = P,.
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Row-Columns Parallel
Matrix-Vetor Multipl
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1D Row-wise Partitioning 1D Column-wise Partitioning

* M x N matrices with K processors

* Worst case
* Total Volume = (K-1) x N words or (K-1) x M words
e Total Number Messages = K x (K-1)
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2D Partitioning:
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2D Jagged-Like Partitioning

2D Jagged-Like Partitioning

* M x N matrices with K=PxQ processors
* Worst case
* Total Volume = (K-P) x N + (Q-1) x M
* Total Number Messages = K x (K-Q) + K x (Q-1) = K x (K-1)
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2D Partitioning:
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2D Checkerboard Partitioning

2D Checkerboard Partitioning
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* M x N matrices with K=PxQ processors

* Worst case
* Total Volume = (P-1) x N+ (Q-1) x M
* Total Number Messages = P+Q-2
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PaToH: Partitioning Tools for
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* PaToH provides a set of algorithms that implement state-
of-the-art multilevel, recursive bisection based
hypergraph partitioning [Catalyurek and Aykanat,
Tech.Rep(1999)].

* Features include:
* simple hypergraph partitioning,
* minimize the cutsize based on connectivity (the formula before)

or just the weighted sum of the cost of the cut nets (e.g., the
number of split columns and/or rows in a matrix),

* fixed-vertex regime (some vertices are fixed to certain parts),
* multi-constraint partitioning (vertices have a set of weights).

Department of
Biomedical Informatics SIAM CSE'09, March 2, 2009 13

Umit Catalyurek "Partitioning Sparse Matrices"




¥ Medical PaToH: MATLAB interface

raes Center

Hypergraph partitioning interface:

[partvec [, ptime]] = PaToH(H, K [,nconst, cwghts, nwghts])

% H: hypergraph in a matrix form (columns are hyperedges)

% K: the number of parts

% nconst: number of constraints (for multi-constraint partitioning)
% cwghts, nwghts: vertex weights and hyperedge costs
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We provide matrix partitioning interface:

[outpv, 1npv, nnzpv, ptime] = PaToHMatrixPart(A, K, dim)
%outpv, 1npv, nnzpv: part vectors for y, x, and A of y=Ax
%A: a matrix %K: the number of parts

%dim: a string (Rw(U|S), Cw, FG, JL, CL)

A function to display the partitionings (inspired by the spypart of J.
Gilbert and S.-H. Teng)

PaToHSpy(nnzpv [, K, outpv, inpv])
%K: part number
%outpv, 1npv, nnzpv: as returned by PaToHMatrixPart
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>> p= UFget(’vanHeukelum/cage5’); %from UFL
>> [outpv, 1npv,nnzpv,ptime] = PaToHMatrixPart(p.A, 4, 'RWS’);
>> PaToHComputevolume(outpv, i1npv, nnzpv, 4)
ans=
37
>> PaToHSpy(nnzpv, 4, outpv, 1npv);

20t

251
oooooooo
oooooo

30+

35

0 5 10 15 20 25 30 35
nz = 233 (17.020%)
vol =37 imbal = [-0.4% 1.3%]
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function[outpv,inpv,nnzpv,ptime]l=jaggedSymPart(A, kl,k2)

prow= rowwiseSymPart(A, k1) ;%Phase 1

for submat = 1:k1, %Phase 2 for a block
rowIndices = find(prow == submat);
Asub= A(rowIndices,l:n);
[ignl,ign2,partsub,timesub] =
colwiseunsymPart(Asub, k2);

end
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* Tested 1,413 matrices (out of 1,877) from UFL Collection
* f#irows >= 500 and #columns >= 500
* #non-zeros < 10,000,000

* K-way partitioning for K =4, 16, 64 and 256

* If 50 x K >= max {#rows, #columns}

* Partitioning instance = matrix & K
* For each partitioning instance we run RW, CW, JL, CH, FG methods

* The method PR chooses among RW, CW, FG, and JL according to
some matrix characteristics

* Sequential runs on a Linux Cluster
* 64 dual 2.4GHz Opteron CPUs, 8GB ram
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Experimental Results:
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Experimental Results:
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Experimental Results:

Total Number of Messa

* Checkerboard and
jagged approaches are
preferable to others.

- * The fine-grain approach:
always a higher number
of messages.

| » PRis very close to fine-
grain: most of the time
chooses fine-grain

approach.
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Fraction of wins
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Experimental Results:

Execution Time

* fine-grain is the
slowest.

e checkerboard is the
fastest.

* PR s faster than the
fine-grain with similar
performance (previous
slide).
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* Hypergraph models for Matrix Partitioning

*  Well.. some are not new but not have been adopted by applications yet. Why?
(Information dissemination problem? Tool?)

* Developed a matrix partitioning interface to PaToH in MATLAB.
* Provides rapid prototyping of new partitioning algorithms
* With UFget, enabled extensive experiments on
*  Will be available soon!

 Results:

* FG almost always yields smaller total volume of communication

* |In rectangular cases, 1D partitioning along the longer dimension is an acceptable
alternative (concurs with R. Bisseling’s findings).

* For square symmetric matrices, jagged partitioning approach is sometimes the best
(all metrics included).

* PRis faster than FG with similar performance
* Work in progress
e Parallel Matrix Partitioning via Zoltan
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 Contact Info:

* umit@bmi.osu.edu
e http://bmi.osu.edu/~umit

 Also:
e http://www.cs.sandia.gov/Zoltan/

e http://www.cscapes.org/
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